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Abstract

Recent developments in artificial intelligence have brought enormous advancements in the indus-
try. One of these advances was the increasing popularity of automated warehouses. The problem
of managing the robots that operate these warehouses is known as the Multi-Agent Pickup and
Delivery problem. While there exist many approaches to the problem there is a lack of tools that
visualize the problem as well as these approaches.

In this paper, we analyze the Multi-Agent Pickup and Delivery problem (MAPD) as well
as suitable approaches for solving it. We implement, visualize and compare a selection of ap-
proaches. We implement two decentralized approaches for the online variant of the MAPD
problem, the Token Passing algorithm (TP) and the Token Passing with Task Swapping algo-
rithm (TPTS), as well as a centralized algorithm for the offline variant of the MAPD problem:
the Task Allocation and Prioritized Pathplanning algorithm (TA-Prioritized). We then visu-
alize these algorithms using the Unity game engine and the ML-agents platform. Finally, we
compare the approaches in various simulated warehouse environments and conclude that the
TA-Prioritized algorithm outperforms the TP and TPTS algorithms and should be always be
used over the TP and TPTS algorithms in situations where it can be used. In situations where
the TA-Prioritized algorithm can not be used, the TP algorithm typically outperforms the TPTS
algorithm in smaller, more congested, warehouse environments while the TPTS algorithm out-
performs the TP algorithm in lager warehouse environments. We also conclude that the inclusion
of agent rotations to these algorithms significantly decreases the performances of the algorithms
and that in the case of the TA-Prioritized algorithm makes it practically unusable for more than
20 agents which is why we proposed a modified version of the TA-Prioritized algorithm which
supports up to 50 agents.
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Samenvatting

Recente ontwikkelingen op het gebied van artificiele intelligentie hebben geleid tot enorme vooruit-
gang in de industriesector. Eén van de domeinen waar er veel vooruitgang is geboekt is het
domein van geautomatiseerde pakhuizen. Het probleem van het beheer van de robots die deze
magazijnen bedienen, staat bekend als het Multi-Agent Pickup and Delivery-probleem. Hoewel
er veel oplossing voor dit probleem bestaan, is er een gebrek aan hulpmiddelen die zowel het
probleem als deze oplossingen visualiseren.

In dit artikel analyseren we het Multi-Agent Pickup and Delivery-Probleem (MAPD) en
geschikte manieren om dit probleem op te lossen. We implementeren, visualiseren en vergelijken
een selectie van algoritmes. We implementeren twee gedecentraliseerde oplossingen voor de online
variant van het MAPD probleem, het Token Passing algorithme (TP) en het Token Passing with
Task Swapping algorithme (TPTS), en één gecentraliseerde oplossing voor de offline variant
van het MAPD probleem, het Task Allocation and Prioritized Pathplanning algoritme (TA-
Prioritized). We visualizeren deze algoritmes gebruikmakende van de Unity game engine en het
ML-agents platform.

Ten slotte vergelijken we de algoritmes in verschillende gesimuleerde pakhuisomgevingen en
concluderen we dat het TA-Prioritized algoritme over het algeeemn beter presteert dan het het
TP en het TPTS algoritme en dus overal waar mogelijk is gebruikt zou moeten worden. In
situaties waar het TA-Prioritized algoritme niet gebruikt kan worden presteert het TP algoritme
beter in kleinere drukke pakhuis omgevingen terwijl het TPTS algoritme beter presteert dan het
TP algoritme in grotere pakhuis omgevingen. We concluderen ook dat het toevoegen van rotaties
aan de robots in de algoritmes leidt tot een significant slechtere prestaties. In het geval van het
TA-Prioritized algoritme is deze impact op de performantie van het algoritme zo groot dat het
algoritme niet meer bruikbaar is vanaf 20 robots. Hiervoor introduceren we in deze paper een
aangepaste versie van dit algoritme dat maximaal 50 agents ondersteund.
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Chapter 1

Introduction

In recent years artificial intelligence (AI) has played a crucial role in the development of today’s
society going from innovation in the automobile industry (Shalev-Shwartz et al., 2016) (Dres-
ner & Stone, 2008), with the recent explosion of self-driving car technologies, to the increasing
importance of Internet Of Things (IoT) devices in our everyday life (Manate et al., 2013) (Cal-
varesi et al., 2017). Artificial intelligence took a huge leap forward in recent years as significant
innovations have seen the light in domains such as machine learning, computer vision, etc.

One of the fields of artificial intelligence that has received a lot of attention in recent years is
the field of multi-agent systems. Multi-agent systems are composed of a number of agents that
interact with each other. Agents are autonomous entities that act on the behalf of others by
executing specifc actions. These actions can be provoked by a change in the environment that
the agent perceives (reactivity) or by an initiative that the agent takes (pro-activeness) (Rabuzin
et al., 2006). Agents can also have numerous other characteristics such as the ability to learn, the
ability to communicate, and more importantly for multi-agent systems the ability to cooperate
(Wooldridge & Jennings, 1994). These agents range from robotic agents, such as robots in
automated warehouses (Ma et al., 2017), to software agents such as chatbots (AbuShawar &
Atwell, 2015).

1.1 Problem Definition

This paper focuses on one application of multi-agent systems: automated warehouses. These
are warehouses where the process of collecting orders in the warehouse and delivering them to
a specific location is automated. The agents, in this case, are robots that navigate through the
warehouse, each picking up and delivering a specific item.

The problem of picking up and delivering tasks is a more general problem known as the Multi-
Agent Pickup and Delivery problem (MAPD) and has been well-researched in recent years. This
paper analyzes this problem and three different approaches: the Token Passing (TP) algorithm,
the Token Passing with Task Swapping algorithm and the Task Allocation and Prioritized Path-
planning (TA-Prioritized) algorithm. that have been developed to tackle this problem. The three
approaches are implemented and visualized using the Unity game engine and the ML-Agents
toolkit, which allows us to incorporate intelligent agents in 3D environments. Using these im-
plementations the three approaches are evaluated and compared in the context of automated
warehouses.
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1.1.1 Research Questions
In this paper we try to answer the following research questions:
e What is the multi-agent pickup and delivery problem (MAPD)?
e How do the TP, TPTS and TA-Prioritized algorithms tackle the MAPD problem?

e How can the MAPD problem and the TP, TPTS and TA-Prioritized algorithms be visual-
ized?

e How well do the TP, TPTS and TA-Prioritized algorithms scale in terms of:

— The number of agents

— The size of the warehouse

e Which impact does the inclusion of agent rotations have on the performance of the algo-
rithms?

1.2 Thesis Structure

This paper is structured as follows. We start by exploring the Multi-Agent Pickup and Delivery
problem and the selected approaches to the problem in Chapter 2. We then discuss the imple-
mentation and working of the approaches and the visualization tool in Chapter 3. In Chapter 4
we compare the different approaches in various warehouse environments. Finally, we present a
summary of our findings and the next steps to be taken in Chapter 5.



Chapter 2

Background

2.1 Multi-agent pickup & delivery problem

The Multi-Agent Pickup and Delivery problem (MAPD) is the problem of assigning a set of
tasks to a group of agents and planning collision-free paths for these agents to execute these
tasks. As the problem consists of a set of tasks and a set of agents the MAPD problem consists
of a task-allocation component and a path-planning component. This is why most approaches to
the MAPD problem (and the three approaches studied in this paper) solve the problem in two
phases: a task-allocation phase and a path-planning phase.

In the task-allocation phase, tasks are assigned to the different agents so that each agent has
at least one task that it can execute if there are tasks available. In this phase, the goal is to find
the “best“ task or task sequence for each agent.

In the path-planning phase, we calculate collision-free paths for each agent so that it can
execute the task(s) it has been assigned in the task-allocation phase. The path-planning compo-
nent of the MAPD problem has been well-studied in the context of the Multi-Agent Pathfinding
problem (Silver, 2005) which can be seen as a one-shot version of the MAPD problem (Ma et al.,
2017). The Multi-Agent Pathfinding problem is the problem of planning collision-free paths for
agents from their current location to a goal location. There exist multiple optimal solutions
for the MAPF problem that can be used to solve the path-planning component of the MAPD
problem: Conflict-Based Search, Space-Time A* Enhanced Partial Expansion A*, M*, etc.

Now that we have a general understanding of the problem, we take a look at how tasks are
defined in the MAPD problem.

2.1.1 Tasks

A task in the Multi-Agent Pickup and Delivery problem always consists of two locations: a
pickup location and a delivery location. Any agent that is currently not executing any tasks is
a free agent and can be assigned to any of the available tasks. When an agent gets assigned a
task it moves from its current location to the pickup location of that task. Once it reaches that
location it picks up the task and starts executing it. The agent is now occupied and the task
that the agent picked up is removed from the task set so that no other agent can try to execute
it as well. The agent then moves from the pickup location of the task to the delivery location
of the task where it delivers the task. Once the agent delivers the task, the task is considered
done and the agent becomes a free agent again. This means that a new task can once again be
assigned to the agent.
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Figure 2.1: Example of a warehouse environment with task endpoints in blue and non-task
endpoints in orange (Ma et al., 2019)

We mentioned that tasks are always composed of a pickup and a delivery location. In the
MAPD problem these locations are special locations. In the next section we take a look at the
different type of locations that can be used in the environment of an instance of the MAPD
problem.

2.1.2 Environment

In the MAPD problem, the environment is represented as a 2D grid. Each location corresponds
to an x- and y-coordinate. In the MAPD problem we consider 4 types of locations:

e Task Endpoints: All locations that can be either pickup or delivery locations

e Non-task Endpoints: Initial locations of agents and extra parking locations for agents

e Path locations: Locations that can be used by the agents to move in the environment

e Wall locations: Obstacle locations that the agents can not use to move in the environment

This means that the pickup and delivery locations of tasks will always be task-endpoints.
Figure 2.1 is an example of a warehouse environment of an instance of the MAPD problem. In
this figure the task-endpoints are colored blue, the non-task endpoints orange, the walls black
and the path locations white. Agents can use all the locations except the wall locations to move
through the warehouse environment.

2.1.3 Well-formed MAPD instances

Not every instance of the MAPD problem is solvable by the algorithms that are analyzed in this
paper. All of the algorithms in this paper are complete for well-formed instances of the MAPD
problem. This means that the algorithm will always be able to find a solution for a well-formed
instance of the MAPD problem if it receives enough resources to be able to compute a result.
An instance of the MAPD problem is well-formed if it satisfies the following conditions:
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e The number of tasks in the task set is finite
e There is at least one non-task endpoint for each agent

e For any two (task or non-task) endpoints there exists a path that traverses no other end-
point

(a) Typical not well-formed warehouse (b) Well-formed warehouse environment
environment

Figure 2.2: Typical not well-formed warehouse environment and well-formed warehouse environ-
ment

In the context of automated warehouses, it is fairly easy to create environments that satisfy
these conditions. Typically warehouses consist of small and long corridors as can be seen in
the left image on figure 2.2. The locations in between the corridors are then generally pickup
and delivery locations. Such a warehouse could not be used as a warehouse environment for the
MAPD problem as the third condition is not satisfied. For the pickup and delivery locations
of tasks to be the locations in the corridors these locations would have to be task-endpoints.
If these locations are task endpoints we can clearly see that there is no path that traverses no
other endpoints between any of these task endpoints. The other warehouse environment in figure
2.2 represents an environment with larger corridors. This environment could be used in a well-
formed instance of the MAPD problem as there exists a path that only consists of path locations
between every two endpoints.

Now that we understand all the components of the MAPD problem we look at the difference
between the offline and the online variant of the MAPD problem as we analyze approaches for
both variants of the MAPD problem in this paper.

2.1.4 Online vs offline MAPD problem

The MAPD problem exists in two variants: the online and offline variant of the problem. The
difference between both variants is the possibility to add new tasks during the execution of the
algorithm. In the offline variant of the MAPD problem, we assume that all tasks are known
at the start of the problem. This means that no other tasks can enter the system once the
task-allocation phase of the algorithm has started. As not all tasks are always available to be
picked up at the start of the algorithm the offline variant of the problem introduces release times
for tasks. The release time of a task is the first timestep at which the task can be picked up. An
agent can not pick up a task if the current timestep is smaller than the release time of that task.
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In the online variant of the problem, we assume that new tasks can enter the system at
any point. Adding a release time for tasks in the online variant of the problem is therefore not
necessary as we can simply add a task only when it is available to be picked up. We assume that
a task can be picked up from the moment it enters the system.

Both variants of the problem can be encountered in the context of automated warehouses. In
an automated warehouse where a product is for example picked up as soon as an order arrives
it would be better to use an algorithm for the online problem while in a warehouse where we
know beforehand which tasks have to be executed on a specific day it would be better to use an
algorithm for the offline variant of the MAPD problem.

Now that we have a better understanding of the MAPD problem we can look at approaches
to the MAPD problem in the next chapter.

2.2 Approaches to the MAPD problem

Since the introduction in the literature of the MAPD problem, there have been different ap-
proaches to the problem. These approaches differ in their way of allocating tasks and planning
paths. Each approach has some advantages and drawbacks. This chapter describes the three
selected approaches as well as why they were chosen.

2.2.1 Token Passing

The first implemented algorithm is the Token Passing (TP) algorithm (Ma et al., 2017). The
TP-algorithm is a decentralized algorithm for the online variant of the MAPD problem. This
means that each agent chooses its own tasks from the task set and plans its own paths. In
order to be able to choose tasks and plan collision-free paths, each agent needs some information
about the global state of the environment: available tasks, paths of other agents, etc. In the
TP-algorithm this information is exchanged between the agents with a token. A token is a shared
block of memory that all agents can access. In the TP-algorithm the token contains the set of
available tasks, the paths of all the agents, and the current tasks assignments of all the agents.
The token is stored by a system that sends the token to any agent that requests it. Whenever
an agent reaches the end of its planned path it requests the token and tries to find a task and
plan a collision-free path to execute that task.

The TP-algorithm is based on a similar concept as the Cooperative A* algorithm (Silver,
2005). Cooperative pathfinding algorithms solve the Multi-Agent Path-finding problem by break-
ing down the problem into a series of single-agent pathfinding problems. These problems can
then be solved using state-of-the-art algorithms such as the A* algorithm. The same concept is
used by the TP-algorithm as the agents plan paths one after the other using a space-time A*
algorithm. The space-time A* algorithm is a modified version of the original A* algorithm. In
the space-time A*-algorithm a third dimension is added to the algorithm: the time dimension.
This allows us to represent the agent’s positions in the future in order to avoid collisions between
the different agents.

‘Working of the algorithm

Algorithm 2.1 describes the working of the TP algorithm. The algorithm starts by initializing
the token. As mentioned earlier the token contains all the unassigned/available tasks, the paths
of all the agents, and the current task assignments of all the agents. To initialize the token the
path of each agent a; is set to the trivial path to its current location: [loc(a;)].
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Algorithm 2.1: Token Passing algorithm (Ma et al., 2017)

1 Initialize token with the (trivial) path [loc(a;)] for each agent a;
2 while true do

3 Add all new tasks, if any, to the task set 7

4 while agent a; exists that requests token do

5 /* system sends token to a; - a; executes now */

6 T' < {7; € T| no other path in token ends in s; or g;}
7 if 7" # 0 then

8 7 < arg min, e7 h(loc(a;), s5)

9 Assign a; to T

10 Remove 7 from T

11 Update a;’s path in token with Pathl(a;, 7, token)
12 else if no task 7; € T exists with g; = loc(a;) then

13 ‘ Update a;’s path in token with the path [loc(a;)]

14 else

15 ‘ Update a;’s path in token with Path2(a;, token)

16 /* a; returns token to system - system executes now */
17 All agents move along their paths in token for one timestep
18 /* system advances to the next timestep */

The TP-algorithm then enters an infinite loop in which it continuously first checks if any new
tasks need to be added to the task set. If there are new tasks available the algorithm adds them
to the task set of the token. The system will then send the token to any agent that requests it.
In the TP-algorithm each free agent, an agent that has currently no tasks assigned to it and is
waiting at an endpoint, requests the token in each timestep.

When a free agent receives the token it starts looking for a task [Line 5-16]. Before the agent
starts to look for the best task it generates a list of available tasks as not all tasks in the task set
are available for each agent [Line 6]. A task is available if the path of no other agent ends in the
pickup or the delivery locations of the task. This check is needed as the TP-algorithm assumes
that free agents can rest (eventually forever) in the last location of their path which means that
the agent that is looking for a task would not necessarily be able to plan a path to the pickup
or delivery location of an unavailable task.

If the agent finds at least one available task it selects the best available task using a heuristic
[Line 8]. In the implementation of the algorithm of this paper, the agent uses the Manhattan
distance heuristic to find the task of which the pickup location is the closest to the agent’s
location. The agent assigns that task to itself in the token [Line 9] and removes the task from
the task set [Line 10]. It then plans a collision-free path from its current location to the pickup
location of that task and a collision-free path from the pickup location of the task to the delivery
location of the task [Line 11].

If there are no available tasks the agent has to move to a location where it cannot prohibit
other agents from executing their tasks. If the agent’s current location is not the delivery location
of any task in the task set the agent can stay at its current location as it is not blocking any
other agent from executing a task. It then updates its path in the token with the trivial path to
its current location [Line 13].

If the current location of the agent is the delivery location of any task in the task set the
agent has to move to a different endpoint. The agent then looks for the closest (task or non-task)
endpoint that is not a pickup or delivery location of any task in the task set and that is not in
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the path of any agent. It then plans a collision-free path to that location [Line 15]. The agent
can start looking for a new task once it reaches that endpoint.

Once the agent has planned a new path, either to the pickup location of its new task or to
an endpoint where it can rest it returns the updated token to the system. The system can then
pass the updated token to the next agent that requests the token. Once all the agents that have
requested the token have received it and planned their paths all agents move along their path in
the token for one timestep [Line 17] and the system increments the current timestep [Line 18].

The TP-algorithm is a basic algorithm as can be seen in the code of algorithm 2.1. This
is why we look at an improved version of this algorithm, The Token Passing with Task Swaps
(TPTS) algorithm (Ma et al., 2017), in the next section.

2.2.2 Token Passing with Task Swaps

The next algorithm is the Token Passing with Task Swaps (TPTS) algorithm (Ma et al., 2017).
The TPTS-algorithm is an improvement of the TP-algorithm. It improves the task-allocation
component of the TP-algorithm by allowing free agents to swap tasks with each other if they
can reach the pickup location of a task more efficiently Algorithm 2.2 describes the working of
the TPTS-algorithm.

Working of the algorithm

Algorithm 2.2: Token Passing with Task Swapping (TPTS) (Ma et al., 2017)

1 Initialize token with the (trivial) path [loc(a;)] for each agent a;
2 while true do
3 Add all new tasks, if any, to the task set T
while agent a; exists that requests token do
/* system sends token to a; - a; executes now */
GetTask(a;, token)
/* a; returns token to system - system executes now */
All agents move along their paths in token for one timestep and remove tasks from T
when they start to execute them
9 /* system advances to the next timestep */

® 35 o « s

Similar to the TP-algorithm the token is first initialized by updating the path of each agent
in the token with the trivial path to its current location: [loc(a;)] [Line 1]. The algorithm then
also enters an infinite loop in which it first adds eventual new tasks to the task set [Line 3]. The
system then sends the token to each free agent that requests it [Line 5]. When an agent receives
the token it looks for a task and plans a new path using the GetTask function [Line 6]. The
agent then returns the updated token to the system that sends it to the other agents that are still
waiting for the token. Once all the agents that requested the token have planned their tasks and
paths all agents move following their path in the token by one timestep [Line 8] and the system
increments the timestep [Line 9]. We can see that currently there are no differences between the
TP and the TPTS algorithm. The difference between both algorithms can be observed in the
code of the GetTask method. Algorithm 2.3 describes the working of this method.

The GetTask function looks for tasks in a similar way as the TP-algorithm. It first creates a
set of available tasks [Line 2]. A task is available for an agent if no other path in the token ends
in the pickup or the delivery location of the task. As long as there are still available tasks the
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Algorithm 2.3: GetTask function of TPTS-algorithm (Ma et al., 2017)

Input: a; Agent for which task is planned, token: Token provided by system
Output: Boolean: Whether function was able to find a task
1 Function GetTask(a;, token):

2 T’ < 71j € T| no other path in token ends in s; or g;
3 while 7’ # () do
4 T < arg min7;c7 h(loc(a;), s;)
5 Remove 7 from T’
6 if no agent is assigned to T then
7 Assign a; to 7
8 Update a;’s path in token with Pathl(a;, 7, token)
9 return true
10 else
11 Remember token, task set and agent assignments
12 a, + agentthatisassignedtor
13 Unassign a} from 7 and assign a; to 7
14 Remove a}’s path from token
15 Pathl(a;, 7, token);
16 Compare when a; reaches s; on its path in token to when a reaches s; on its
path in token’
17 if a; reaches s; earlier than af then
18 /* a; sends token to a - a} executes now *
19 success < GetTask(a], token)
20 /* a, returns token to a; - a; executes now */
21 if success then
22 ‘ return true
23 Restore token, task set, and agent assignments
24 if loc(a;) is not an endpoint then
25 Update a;’s path in token with Path2(a;, token)
26 if path was found then
27 ‘ return true
28 else
29 if no task 7; € T exists with g; = loc(a;) then
30 Update a;’s path in token with the path [loc(a;]
31 else
32 | Update a;’s path in token with Path2(a;, token)
33 return true;
34 return false




10 CHAPTER 2. BACKGROUND

“best “ task out of the available task is selected. Selecting the “best* task is also here done using
a distance heuristic (in this case the Manhattan distance) [Line 4]. That task is then removed
from the set of available tasks [Line 5]. This is the first difference between the TP and the TPTS
algorithms. When the TP-algorithms selects an available task it is sure that it is able to plan a
path for that task as no other agent is assigned to that task. When the TPTS algorithm selects
a task it first checks whether it can reach the pickup location of that task more efficiently than
the agent that is already assigned to that task if there is one. If this is not the case the agent
tries the next “best* available task. This process is repeated as long as there are still available
tasks.

When an agent selects a task there are two possible scenarios: no other agent is assigned to
the selected task or another agent is already assigned to the selected task but has not yet reached
the pickup location of the selected task. If no other agent had already assigned that task to itself
the agent can assign that task to itself [Line 7], plans a path to execute that task [Line 8], and
returns true to indicate that it was able to find a task.

If another agent had already assigned that task to itself a copy of the token is created [Line
11]. This copy of the token is used to restore the token to its original state in case the agent can
not reach the pickup location of the task more efficiently than the agent that is already assigned
to the task. The agent removes the assignment of the other agent [Line 13] and removes the
other agent’s path from the current token [Line 14]. The agent then plans a path to execute the
task [Line 15]. It then compares if it can reach the pickup location of that task more efficiently
than the agent that was already assigned the task [Line 17].

If that is the case the agent calls the GetTask function for the other agent [Line 19]. The
other agent will then try to find a new task for itself and plan a path to the pickup location of
that task or try to plan a path a safe location where it can rest. This is the only situation in
which the GetTask function can return false. When the GetTask function is called for the other
agent that agent can already be on his way to the pickup location of the task. This means that
the other agent is not necessarily on a task endpoint. In a well-formed MAPD instance, there
exists a path between every two endpoints that traverses no other endpoint but there is not
necessarily a path between two non-endpoint locations that traverses no other endpoint. This
means that the other agent could not find a path to a pickup location of a new task or a path
to a safe location where it can rest. If that is the case the agent returns false and the token is
restored using the copy that was made earlier and the agent for which we were looking for a task
tries the next “best“ available task.

If there are no more tasks available the agent tries to plan a path to a safe location where it
can rest. As was described earlier the agent can be at a non-endpoint location when the GetTask
function is called from line 19. If this is the case the agent tries to plan a path from its current
location to the closest free endpoint [Line 25]. If the agent is able to plan such a path it returns
true [Line 27]. This allows the agent that called the GetTask function for this agent to swap
tasks with this agent. Otherwise, the GetTask function returns false [Line 34] and the agents can
not swap tasks. If the agent is currently on an endpoint it checks whether its current location
is a free endpoint. An endpoint is free if it is not the delivery location of any task in the task
set. If its current location is free it updates its path in the token with the trivial path to its
current location [Line 30]. Otherwise, the agent plans a path to the closest free-endpoint [Line
31]. In both cases, the GetTask function returns true as it was able to plan a path to the pickup
location of another task or to a safe location. This allows the agents to swap tasks.

Both algorithms that we have described in the previous sections are decentralized algorithms
for the online variant of the MAPD problem. The last algorithm in this paper is a centralized
algorithm for the offline variant of the MAPD problem: the Task Allocation and Prioritized
Pathplanning algorithm. In the next section we take a look at the working of this algorithm.
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2.2.3 Task Allocation and Prioritized Pathplanning

The last algorithm is the Task Allocation and Prioritized Pathplanning algorithm (TA-Prioritized)
(Ma et al., 2019). In contrast to the TP- and TPTS-algorithms the TA-Prioritized algorithm is
a centralized algorithm that tackles the offline variant of the MAPD problem. This means that
the algorithm assumes that all tasks are known beforehand. This also means that tasks now
also have a release time on top of the pickup and delivery locations that they already had in
the online variant of the problem. The algorithms for the online variant of the MAPD problem
can also be used to solve the offline variant of the problem but they produce less optimal results
as they do not use all the available information. The TA-Prioritized algorithm consists of 2
distinct phases: a task-allocation phase and a path-planning phase. In the task-allocation phase,
the algorithm creates task sequences for each agent. Each agent gets assigned an ordered list of
tasks that he needs to execute in that order. In the path-planning phase, the algorithm plans one
collision-free path for each agent that executes all the tasks of that agent. We start by analyzing
the task-allocation component of the algorithm.

Task Allocation

In the task-allocation phase of TA-Prioritized, the algorithm first creates a directed weighted
graph for the MAPD instance similarly to (Osaba et al., 2015) and (Yoon & Kim, 2017). The
algorithm then solves a special TSP to compute the best task sequences for all the agents. The
TA-Prioritized creates a graph G=(V, E). The set of nodes V of the graph consists of all the
agents and tasks (t;) (V. = AUT). The set of nodes therefore consists of two types of vertices:
agent vertices (a; € A) and task vertices (t; € T)). Next to the vertices there are also 4 types of
edges with different weights:

e An edge from agent a; to task ¢;: max(dist(a,.position, t;.pickup), t;.release — time)

o An edge from task t; to task ¢;: dist(¢;.pickup, t;.delivery) + dist(t;.delivery, t;.pickup)
e An edge from task ¢; to agent a;: dist(pickup;, delivery;)

e An edge from agent a; to agent a;: 0

The first type of edges is edges from an agent vertex to a task vertex. These vertices represent
an agent moving from its current location to the pickup location of its first task. The weight
of the edge is the maximum of the time the agent needs to move to the pickup location and
the release time of the task. The second type of edges is edges from a task vertex to another
task vertex. These vertices represent an agent that is executing his current task and moving to
its next task. The weight of the edge is the cost of executing its current task: dist(¢;.pickup,
t;.delivery) as well as the distance to move from the delivery location of its current task to the
pickup location of its next task: dist(¢;.delivery, t;.pickup). The third type of edges is edges
from task vertices to agent vertices. These vertices represent agents executing their last tasks.
The weight of this edge is the distance from the pickup location of that task to the delivery
location of that task. The last type of edges is edges from an agent vertex to another agent
vertex. These edges have no weight as agent a; has no tasks assigned as it has already delivered
its last task.

For every non-trivial instance of the MAPD problem with at least one agent and at least one
task, we know that G contains at least one Hamiltonian cycle as G is a complete graph with more
than 2 vertices. A Hamiltonian cycle in a graph is a cycle that visits each vertex exactly once.
The Hamiltonian cycle, therefore, visits each agent vertex exactly once and can be partitioned
into M parts (considering there are M agents) where each part starts with an agent vertex and
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Figure 2.3: Example of a Hamiltonian cycle that can be partitioned into 3 parts that represent
the task sequences of the 3 agents (Ma et al., 2019)

is followed by a sequence of task vertices. Figure 2.3 is an example of such a Hamiltonian cycle
for 3 agents. These M parts can then be converted into M task sequences for the M agents. Due
to the definition of the weight of the edges in the graph the sum of the weight of all the edges
in the Hamiltonian path is a lower bound for the makespan of the algorithm. The makespan
of the algorithm is the earliest timestep at which all tasks have been executed and all agents
have stopped moving. This is an important metric when looking at approaches to the MAPD
problem and will later be used to evaluate and compare the different approaches. Looking for a
good Hamiltonian cycle in the graph, therefore, corresponds to looking for a Hamiltonian cycle
with a low sum of the weights of the edges of the path.

The TA-Prioritized algorithm finds a good Hamiltonian cycle using the LKH-3 TSP solver
(Helsgaun, 2017). The TSP solver can solve various TSP problems as well as various types of
Vehicle Routing Problems. The graph is provided to the TSP solver as a Traveling Salesman
Problem with Time Windows (TPSTW). The LKH-3 solver then looks for Hamiltonian cycles
that can be partitioned correctly. In each iteration, the LKH-3 TSP solver provides a Hamiltonian
Cycle with a specific cost that is lower than the one computed in the previous iteration. This is
done as this is a very slow process. We therefore always provide a time limit to the TSP solver
and use the best solution found in that time span. It is important to give the TSP solver enough
time as the cost that the LKH-3 solver assigns to a specific Hamiltonian Path is only the lower
bound of the makespan of the task sequences in that path. The higher the estimated makespan
of the TSP solver the higher the actual makespan will be once the paths of the agents have been
planned. Once we have a good Hamiltonian Path from the TSP solver we the path is converted
to task sequences by assigning all the tasks of which the task vertices follow an agent vertex to
the agent that corresponds to that agent vertex.

Once all the tasks have been assigned the algorithm calculates paths for all the agents. This
is done using the Prioritized Path planning algorithm as described in the following section.

Prioritized Path Planning

The Prioritized Pathplanning algorithm of TA-prioritized is an improved version of the Prioritized
Motion Planning algorithm of (Van Den Berg & Overmars, 2005). This algorithm first assigns
priorities to each agent. This priority is used to determine the order in which paths are going to
be planned. This is done to avoid increasing the execution time of agents with large task sets.
Prioritized Motion Planning uses an estimation of the execution time of each agent on their task
set as a priority for that agent. It then plans the paths of these agents in decreasing order of
priority. This means that agents with larger estimated execution times are handled first. This
is important as once a path has been planned, all the paths of the remaining agents cannot
collide with the planned path. This means that some of these agents for which paths are planned
later might have to wait in their path which will increase their execution time. This is why it
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is important to start with the agents that already have a large estimated execution to avoid
increasing the makespan of the algorithm.

The Prioritized Pathplanning algorithm of TA-Prioritized algorithm improves the Prioritized
Motion Planning algorithm by using the actual execution times of the agents on their tasks
instead of estimates. As the Prioritized Motion Planning algorithm uses the estimated execution
times as a priority for each agent at each step the order in which all the paths will be planned is
already decided before the algorithm even starts planning paths. The Prioritized Pathplanning
algorithm of TA-prioritized only chooses the agent it is going to plan for next after it is done
with the agent it is currently planning for. This allows the algorithm to use the actual execution
times instead of the estimated execution times as priorities for the agents. The actual execution
times can be calculated as we can plan paths for all the remaining agents that do not collide
with the already planned paths. We can then select the agent with the largest execution time
as the next agent, remove that agent from the remaining agents, and add its planned path to
the paths that have already been planned. We then plan new paths for all the remaining agents
that do not collide with the updated list of already planned paths and repeat this process until
all the agents have a collision-free path.

Planning a path in the Prioritized Pathplanning algorithm of TA-Prioritized works by dividing
the total path for each each agent into several sub-paths. The path of an agent to complete one
task consists of a sub-path from the agent’s current location to the pickup location of the task,
a sub-path from the pickup location to the delivery location of the task, and a sub-path from
the delivery location of the task to the pickup location of the agent’s next task or a location
where the agent can rest. The TA-Prioritized plans these collision-free sub-paths one after the
other. The algorithm starts by planning a path for the agent to execute the first task in its task
sequence, then the second task of its task sequence, etc. The last sub-path is a path from the
agent’s last delivery location to the agent’s initial location which is considered the agent’s parking
location. Planning collision-free sub-paths is done using the same space-time A* algorithm as
the space-time A* algorithm of the TP and TPTS algorithms.

In order to avoid situations where a sub-path cannot be planned due to multiple agents block-
ing each other the TA-Prioritzed algorithm uses a deadlock-avoidance method called “reservation
of dummy paths“ (Liu et al., 2019). This deadlock-avoidance method is explained in the following
section.

Deadlock-avoidance: dummy path reservations

Avoiding deadlock situations in the TA-Prioritized is achieved by reserving dummy paths. Dummy
paths are collision-free paths from the goal location of a sub-path to the agent’s parking spot.

This path allows the agent to move back to its parking location and wait there until it can find

a collision-free path to the goal location of that sub-path.

To introduce dummy paths the TA-prioritized algorithm modifies the goal function of the A*
algorithm that it uses. The A* algorithm normally considers the problem to be solved when the
goal node has been expanded. This ensures that the goal node can not be reached in a more
efficient way through another path. The TA-prioritized algorithm uses a different goal function
for the A* algorithm. The algorithm only considers the problem to be solved when the goal
node has been expanded and there exists a collision-free dummy path from the goal location
to the agent’s parking spot. Such a dummy path can always be calculated. This is proved by
induction in (Liu et al., 2019). The idea behind the proof is that an agent can always wait at
its parking spot until all the other agents have finished their tasks and returned to their parking
spots before it starts executing its own tasks. At that point, no other agent can block the agent
from executing its tasks. By adding these dummy paths at the end of each sub-path the TA-
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prioritized algorithm ensures that an agent can always move back to its parking location to wait
until it can plan a collision-free sub-path to the goal location of the sub-path.

2.2.4 Selection of algorithms

Now that we understand how the selected algorithms work we take a look at the characteristics
and differences of the selected algorithms and why these algorithms were selected to represent
the MAPD problem in the context of automated warehouses.

Offline/online setting

The first difference between the selected algorithms is the difference between the algorithms for
the online and the algorithms for the offline versions of the MAPD problem. As we want the tool
to represent the MAPD problem in its most general form we have selected algorithms for both
variants of the problem. The Token Passing (TP) algorithm and the Token Passing with Task
Swaps (TPTS) algorithm are algorithms for the online variant of the MAPD problem while the
Task Allocation and Prioritized Pathplanning (TA-Prioritized) algorithm is an algorithm for the
offline variant of the MAPD problem. As described in section 2.1.4 the main difference between
both versions of the problem is that all the tasks have to be known at the start of the algorithm
in the offline variant of the problem while in the online variant of the problem, it is assumed that
tasks can enter the system at any point.

Representing both variants of the MAPD problem in the tool is important as both variants can be
found in real-world warehouses. An example of an automated warehouse environment for which
all tasks are known beforehand is for example a warehouse where customers can buy products
and pick these products up at a specific day and time. This is similar to the system that was
used by various stores during the COVID-19 crisis. In these warehouses, all tasks of a specific
day and the time at which they need to be picked up are known beforehand. In this warehouse
environment, offline algorithms such as the TA-Prioritized algorithm can be used as they will be
more efficient than the algorithms for the online MAPD problem. In the previous example, all
the packages that need to be picked up on a specific day were known beforehand. This informa-
tion is however not always available. A warehouse where products need to be picked up as soon
as someone orders a product for example is a warehouse environment where only algorithms for
the online MAPD problem can be used.

Centralized /decentralized approaches

Another important characteristic of the different approaches is the distinction between the cen-
tralized and decentralized approaches to the problem. The difference between both approaches is
where the tasks and paths are planned. Centralized approaches use a central system to allocate
all the tasks and plan paths for all the agents while decentralized approaches let each agent
plan its own tasks and paths. Both approaches have advantages and disadvantages that will be
studied in this section.

One of the major advantages of decentralized approaches is the fact that these systems are
easier to scale than centralized systems as they can be easily extended to a fully distributed
algorithm (Claes et al., 2017). The analyzed decentralized approaches that tackle the MAPD
problem (TP, TPTS, and TP-SIPPwRT) for example let all agents assign tasks to themselves
and plan their own paths based on some global information that is provided to them via a token.
This means that new agents can easily be added to the system as these will calculate their own
tasks and paths. In approaches where a central system is used for the planning of tasks and
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paths, this is more difficult as the new agents will increase the number of computations that
have to be done by the single central system.

Another advantage of decentralized approaches is the robustness of these approaches com-
pared to centralized approaches. As all the agents plan their own tasks and paths in decentralized
approaches there is no central system that can fail. This means that only individual agents can
fail. If this is the case the agent can be removed while the other agents can continue with their
tasks. This is not the case in a centralized approach. If the central system fails in a centralized
approach no task or path can be planned for any agent.

Decentralized approaches also have disadvantages. One of these disadvantages is the cost
that is associated with these approaches. Decentralized approaches require agents that are able
to compute their own tasks and paths. This requires robots with more advanced hardware
for example in the setting of automated warehouses which is not always available. Robots in
centralized approaches need less advanced hardware as they just need to be able to follow a given
plan.

Another disadvantage of decoupled algorithms is the amount of communication needed be-
tween the agents. In a centralized algorithm such as TA-Prioritized and TA-Hybrid, only the
central entity communicates with the agents. It assigns each agent one or more tasks and gives
it one or more paths to execute these tasks. Once the agents have received this information no
further communication is needed until the system gets new tasks that it needs to assign. The
agents do not have to communicate between themselves as the central entity guarantees that
there will be no collisions between the agents. In decoupled algorithms such as the TP, TPTS,
and the TS-SIPPwRT algorithms this is not the case. As the agents plan their own tasks and
paths they need to receive global information about the available tasks and the paths of the
other agents to plan their own tasks and plans. In the TP, TPTS, and TS-SIPPwRT algorithms
this information is exchanged in the form of tokens. Consistently sending this token back and
forth between the agents can be slow in large environments.

Now that we understand the selected approaches and why they were selected we look at the
implementation of the visualization tool and the selected approaches.
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Chapter 3

Implementation

In this chapter, we give an overview of the implementation and working of the visualization tool
and the selected approaches.

3.1 Unity environment

The visualization tool is created using the Unity game engine and its ML-agents platform. The
Unity engine is a popular cross-platform game engine that allows the development of 2D and 3D-
applications as well as interactive simulations. We use the Unity game engine to create a visual
representation of the MAPD problem and the selected approaches. The selected approaches
are implemented in Python and are connected to the Unity game engine via Unity’s ML-agents
platform (Juliani et al., 2018). The ML-agents toolkit is an open source project which allows
developers to create and manage environments that are simulated using the Unity game engine.
The ML-agents platform allows us to interact with the simulation using its Python API. Using
the ML-agents platform to implement these planning approach allows the tool to later support
learning approaches as well without having to change the current implementation of the tool.

The tool supports both the offline and the online variant of the MAPD problem. The following
section describes the working of the visualization tool. We first take a look at how we can
configure the visualization tool to support different warehouse environments.

3.1.1 Configuration

The visualization tool supports a variety of environments. An environment in the tool is rep-
resented by a configuration file. Creating a new environment, therefore, consists of creating a
new configuration file for that environment and providing that configuration file to the visual-
ization tool. Various elements of the warehouse environment can be configured. The following
list represents all the elements that can be configured using a configuration file:

e The warehouse setup: The current warehouse layout is determined by a 2D matrix in which
open locations are represented by 0, obstacles are represented by 1, non-task endpoints are
represented by 2 and task endpoints are represented by 3.

e The number of degrees an agent can rotate in 1 timestep: needs to be a divider of 90°.

e The amount of time needed for an agent to execute one action (movement from one location
to another, rotating, picking up / delivering a task): default 1 second.
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e The number of agents and their starting positions in the warehouse.

e The initial tasks in the task set.
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(a) Small warehouse (b) Large warehouse

Figure 3.1: The 2 currently implemented warehouse environments

The visualization tool currently contains 2 warehouse environments that are represented in
Figure 3.1.

3.1.2 Initialization

Once the Unity visualization loads a configuration file the environment is created in Unity. Based
on the matrix provided in the configuration file the floor and the walls are generated. As can be
observed in Figure 3.1 task endpoints are colored in blue, non-task endpoints in orange, paths
in white and walls in black. Once the environment is generated all the information provided in
the configuration file is sent to the implemented MAPD algorithm via the ML-agents platform.
The MAPD algorithm is then initialized with all the provided data: agents and tasks are cre-
ated, pathfinding planners are created with the provided environment, etc. The communication
between the Unity engine and the MAPD algorithm is handled by 2 communication channels
created with the ML-agents framework. A first channel is used to send all the required data for
the initialization of the MAPD algorithm as described above while a second channel is used to
communicate task-related information such as the addition of new tasks in the online variant of
the MAPD problem.

3.1.3 Agent Actions

Once the algorithm is initialized the Unity engine starts requesting actions for the agents. An
action consists of a position, a rotation, and two booleans that indicate whether the robot needs
to pick a task up or deliver a task in this action. When an agent executes an action it can either
move to a neighboring location or pick a task up or deliver it. This is where the tool makes
a distinction between the offline and the online variants of the MAPD problem. In the offline
variant of the tool, the Unity engine requests all the actions for all the agents at once. Currently,
the only algorithm for the offline MAPD problem that is implemented in the tool is the TA-
Prioritized algorithm. As the TA-Prioritized algorithm calculates the paths of all the agents at
the start of the algorithm it only looks up the next action of each agent in the pre-computed
paths and returns that action. In the online variant of the tool each Unity robot requests an
action individually to the MAPD algorithm. For each Unity robot an Agent is created and
managed in the MAPD algorithm. This agent computes the next action of the Unity robot and
sends that action back. Both the TP and TPTS algorithms return the next position of the agent
if the agent has already planned a path or the agent or start looking for a task and plan a new
path for the agent if the agent has reached the end of its planned path.
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Another point in which the environment for the offline version of the MAPD problem differs
from the environment of the online MAPD problem is the task creation.

3.1.4 Task Creation

As explained in section 2.1.4 the difference between both variants of the problem is the availability
of the tasks. The online variant of the problem allows new tasks to enter the system during the
execution of the program while this is not allowed in the offline variant of the problem. To
make this concept clear the environment for the online approaches of the MAPD problem always
generates a new task as soon as a task is delivered. The environment of the offline approaches
of the MAPD problem does not do this. Once all tasks are delivered in the offline environment
the problem is considered solved and the simulation can be stopped, while in the online variant
the problem is never actually solved as tasks are continuously added.

Now that we have an idea of how the Unity game engine and the ML-agents platform are
used to create a visualization tool we can have a look at the contributions to this tool that are
presented in this paper.

3.2 Contributions

This section describes the contributions to the tool that are presented in this paper. In this
paper, we focused on the (online and offline) variants of the MAPD problem. We implemented
3 algorithms to tackle the MAPD problem and visualized them using the Unity tool.

3.2.1 Token Passing

The first implemented algorithm was the Token Passing (TP) (Ma et al., 2017) algorithm. The
TP-algorithm was implemented from scratch based on the pseudo-code of section 2.2.1 that was
provided by (Ma et al., 2017). The algorithm consists of a System that is responsible for the
creation of the agents, the token and the tasks. When the information about the environment
is provided by the Unity engine to the ML-agents platform the System is created. The system
then creates and saves the provided tasks and creates the agents. For each Unity robot, an agent
is created. This agent will plan the actions that are executed by the Unity robot. Each agent in
the Token Passing algorithm has a space-time A* planner that it uses to plan paths to the pickup
and delivery locations of tasks. The space-time A* algorithm that is used in the Token Passing
algorithm (as well as in the Token Passing with Task Swaps algorithm) is a modified version of
the space-time A* algorithm that is used by the Task Allocation and Prioritized Pathplanning
algorithm. In order to be able to use this implementation of the space-time A* algorithm in the
Token Passing algorithm some modifications were needed.

Modifications to space-time A*-algorithm

The first modification that was applied to the algorithm is the addition of rotations. Robots
in the Unity environment have to rotate before they can start moving in different directions.
In the original implementation of the algorithm, it was assumed that agents could move in any
direction without having to rotate. Adding rotations was done by adding a fourth dimension to
the states of the A* algorithm so that each state now consists of an x-coordinate, a y-coordinate,
a timestep, and now a rotation as well. In order to make sure that agents could only move if they
have the correct rotation the node expansion of the algorithm was also modified. Agents can
now stay at their current location (and current rotation), rotate clockwise (by adding a constant
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to their rotation), or rotate counterclockwise (by removing a constant degree from their current
rotation). On top of that when agents have specific rotations, they can move in specific direc-
tions. Agents can move up when their current rotation is 0°, right when their current rotation
is 90°, down when their current rotation is 180° and finally left when their current rotation is
270°. When the current rotation of an agent is for example 90° the agent has 4 possible moves:
staying at its current location and not rotate, rotate counterclockwise, rotate clockwise, or move
to the location to the right of the agent.

When adding rotations the heuristic that is used by the A* planner also needs to be adapted.
The original implementation of the algorithm used the Manhattan distance as a heuristic. The
Manhattan distance between two point P; and P, is calculated with the following formula:
dist(Py, Py) = abs(Py.x — Py.x) 4+ abs(Py.y — Py.y). This formula does not take the rotation of
the agents into account which causes agents to sometimes keep rotating instead of just waiting
at a location. In order to prevent agents to rotate when they do not need to rotate we can add
the absolute value of the difference between the rotations of the two locations. This adds a cost
of 1 for each rotation the agent needs to execute.

Another modification that was applied to the original implementation of the algorithm is the
reservation of parking locations of agents. The original implementation of the algorithm assumed
that each agent had 1 parking spot that no other agent could ever use in a path. This assumption
was made as the algorithm implementation of the space-time A*-algorithm moved each agent
back to its parking location after the agent reached its final delivery location. This means that
an agent always moves to its parking location to rest. This is not the case in the Token Passing
algorithm. In the Token Passing algorithm, agents can rest at their last delivery location as long
as it is not the delivery location of a task in the task set. Instead of always reserving the parking
location of the agents we, therefore, need to reserve the last location on the path of an agent. If
an agent tries to use a location that is the end of the path of another agent it has to make sure
to use that location before the agent that will rest there arrives. Otherwise, the agent needs to
find a different path. By reserving the last location of the paths of the agents we partly solve the
problem. Agents that still need to plan a path will now only use that location if they can reach it
before the agent that will rest on that location but there is still a problem with agents that have
already planned their paths. When an agent plans a path it assumes that this path will always
be collision-free and therefore never recomputes its path. If agent A has already planned a path
that uses a location L but another agent B plans a new path that will end in location L, before
agent A reaches that destination this might lead to a collision. In order to avoid these collisions,
an agent has to check whether any other agent has already planned a path that contains its goal
location. If that is the case the agent has to wait until that agent has passed its goal location
before it can reach that location and rest there. This is the final modification to the original
implementation of the space-time A*-algorithm.

3.2.2 Token Passing with Task Swapping

The Token Passing with Task Swaps (TPTS) algorithm was also implemented from scratch
using the pseudo-code provided by (Ma et al., 2017) that is explained in section 2.2. The TPTS
algorithm uses the same modified space-time A*-algorithm as the TP algorithm.
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3.2.3 Task Allocation and Prioritized Pathplanning

The Task Allocation and Prioritized Pathplanning algorithm in the tool is a modified version of
the implementation of (Cawood, 2020)!. This implementation of the TA-Prioritized algorithm
visualizes the planning algorithm using the MESA python library. The first modification that
was implemented was to add support for multiple warehouses. The original implementation of
the algorithm only supports 2 warehouse environments. In order to support more environments,
the LKH-3 TSP solver has to be used to generate new task sequences as this is not supported
by this implementation. In order to generate these sequences . TSP files that contain the MAPD
instance have to be generated. These files can then be provided to the TSP solver so that it
can generate task sequences. In order to be able to generate these . TSP files automatically a
script was written to take in a set of tasks and an environment and automatically generate these
files that can be provided to the TSP solver. The LKH-3 TSP solver generates .tour files that
represent the Hamiltonian Path that the solver found. These files can then be provided to the
original implementation of the algorithm so that the path can be converted into task sequences
as explained in section 2.2.3.

Parallelizing Prioritized Pathplanning

The last modification that was made to the TA-Prioritized implementation of (Cawood, 2020) was
to parallelize part of the algorithm. As described in section 2.2.3 the Prioritized Pathplanning
algorithm plans paths for the agents in decreasing priority. It always selects the agent with
the highest priority out of the remaining agents and plans a path for it. In the Prioritized
Pathplanning implementation of TA-Prioritized, the algorithm calculates the paths of all the
remaining agents as if they were the next agent for which a path needs to be planned. This
provides the actual execution time of each agent if they were to be selected as the next agent
for which a path needs to be planned. The algorithm then selects the agent which has the path
with the highest cost (in this case the longest path), removes that agent from the remaining
agents, and plans a path for that agent. This process is repeated until the algorithm has planned
a path for each agent. Calculating the paths of all the remaining agents in order to determine
which agent is going to be selected next is done sequentially in the original implementation of
Prioritized Pathplanning. This is not a major problem for this implementation as the algorithm
is relatively slow, especially with a large number of agents. There is however a problem in our
use-case of the algorithm as our environments support rotations. Adding rotations increases the
search space of the algorithm which slightly increases the runtime of planning a single path. This
slight increase of the runtime when calculating a path has however a significant impact on the
runtime of TA-Prioritized as the algorithm calculates a path for each remaining agent before it
selects an agent. This means that in the case of 50 agents the algorithm first plans a path for
50 agents, selects one agent, then plans a path for 49 agents, selects an agent, etc. In order to
reduce the runtime of TA-Prioritized, we parallelized the planning of the paths for the remaining
agents. The impact of this parallelization is analyzed in the next chapter.

Now that we have an understanding of the contributions of this paper to the visualization tool
we can evaluate and compare the different approaches in the context of automated warehouses.

Thttps://github.com/Pieter-Cawood /M-TA-Prioritized-MAPD
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Chapter 4

Results

In this chapter, we evaluate and compare the different approaches that were described in this
paper. Different comparisons are made to get a clear understanding of the strengths and weak-
nesses of each approach. We start off by comparing the scalability of the algorithms in terms of
the number of agents. We then analyze the scalability of the algorithms in a larger warehouse en-
vironment. Next, we analyze the performance loss of the space-time A*-algorithm that is caused
by the addition of rotations. Finally, we compare the original (unparallelized) implementation of
the TA-Prioritized algorithm to the parallelized version of the algorithm presented in this paper.

4.1 Metrics

Before we start comparing the algorithms we have to define the metrics that we will use to
compare the algorithms. For each of the comparisons mentioned above, different metrics are
used. To analyze the scalability of the algorithms in terms of agents and in warehouses of
different sizes the following metrics were used:

e Makespan: The makespan of an algorithm is the timestep at which all the tasks have been
executed and all the agents have stopped moving. (Ma et al., 2017)

e Average service time: The service time of a task is the amount of the timesteps between
when a task enters the system and when a task is delivered. (Ma et al., 2017)

e Execution time per timestep: The execution time of the algorithm is the number of millisec-
onds between when the algorithm starts the task-allocation phase and when all the tasks
have been executed and all the agents have stopped moving. We look at the execution time
per timestep instead of the total execution time as this gives us an idea of how long the
algorithm needs on average to compute all the actions of all the agents for 1 timestep.

To evaluate the difference in performance between the original space-time A* algorithm and
the modified version of the algorithm that supports rotations the following metrics are used:

e Runtime: We use the runtime that the algorithm needs to be plan a specific amount of
collision-free paths (e.g. 10 paths).

e Average length of the paths

23
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e Average size of state space: Lastly we use the average size of the state space as a metric.
The state-space contains all the possible states that the algorithm could still explore in
order to find the goal state during the search. Each state in the state space represents a
possible state for the agent.

Finally to compare the (unparallelized) original implementation of the TA-Prioritized algo-
rithm and the modified (parallelized) TA-Prioritized algorithm we used the following metrics:

e Runtime per timestep

e Speed-up: the ratio of the runtime of the original implementation and the runtime of the
modified implementation

Now that we know which metrics will be used to evaluate and compare the algorithms we
present the environments in which the algorithms will be evaluated and compared.

4.2 Evaluation environments
In order to evaluate the algorithms 2 different warehouse environments are used:

e Small warehouse with 192 task endpoints and 80 non-task endpoints

e Large warehouse with 480 task endpoints and 146 non-task endpoints

INNRNNENENNNNNNNNNRNAN|

1 1

(a) Small warehouse (b) Large warehouse

Figure 4.1: Both warehouses used for comparisons: small warehouse contains 192 task end-
points and 80 non-task endpoints, large warehouse contains 480 task endpoints and 146 non-task
endpoints

Figure 4.1 is a visual representation of both warehouses. Now that we know which metrics
and environments are used to evaluate and compare the algorithms we can look at the first
comparison.

4.3 Experimental Results

In this section, we evaluate and compare the algorithms based on the collected metrics in the
two warehouse environments.
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4.3.1 Scalability in terms of number of agents

We first take a look at the scalability of the algorithms in terms of the number of agents in the
warehouse.

In order to test the scalability, we run each algorithm with 5, 10, 20, 30, 40, and 50 agents.
All the algorithms are first executed in the small warehouse environment with the same task set
of 500 randomly generated tasks. All of the tasks are added to the task set in the first timestep.
Figure 4.2 and Table 4.1 report the results of the different algorithms.

Makespan: The first metric we analyze is the makespan of the different algorithms. In general,
we can see for all the algorithms that the makespan decreases as the number of agents increases.
This is due to the fact that more agents can execute tasks simultaneously so each agent needs
to execute fewer tasks on its own. The length of the path of the agents to execute their tasks
and the makespan of the algorithm are therefore shorter.

When we look at the makespans of the different algorithms we can see that the TP algorithm
consistently has the largest makespan. This is expected as the TP-algorithm is the most basic
algorithm of the three. In the TP-algorithm agents select a task based on the distance from
the agent’s current location to the pickup locations of the tasks and simply plans a collision-free
path to execute that task.

The TPTS-algorithm always produces makespans that are slightly lower than the makespans
of the TP-algorithm as the TPTS-algorithm saves time by allowing agents to swap tasks if this
can reduce the makespan. We can see that the difference between the makespan of the TP and
the TPTS algorithms is larger when there are fewer agents. This is due to the fact that the
agents are generally further away from the tasks as there are less agents to execute all the tasks.
This allows the agents to swap tasks more often. For larger amounts of agents, the warehouse
gets congested and which makes it more difficult for the agents to reach the pickup location
quicker than the agent that is already assigned to that task.

From the results, we can also notice that both the TP and the TPTS algorithms have signif-
icantly higher makespans than the TA-Prioritized algorithms even though all algorithms know
all the tasks beforehand as all the tasks are added to the task set in the first timestep. This
is due to the working of the algorithms. The TP and TPTS algorithms only look for the next
“best “ task for each agent and ignore possible tasks that can be executed after that task. The
TA-Prioritized algorithm plans task sequences for each agent so it does not only look at the next
“best “ task but also looks for tasks to be executed after that task. The TA-Prioritzed algorithm
might therefore decide to go for a task that is slightly further away from its current location
if that can reduce the makespan of the algorithm. The TA-Prioritzed algorithm also looks for
tasks for all the agents at the same time and only gives an agent a task or task sequence when
no other agent can execute that task or task sequence more efficiently. This is not the case of
the TP algorithm as every agent looks for his “best* task. This means that in a scenario where
we have two agents, agent A and agent B, and we know that agent B is only right next to the
pickup location of a task the task might still be executed by agent A if agent A requests the
token before agent B. The TPTS algorithm would re-assign the task in this case to give it to
agent B as task swapping is allowed in the TPTS algorithm but the same can happen with the
TPTS algorithm if the agent is not able to plan a path to an endpoint where it can rest.

Next to comparing the makespans of the algorithms, we can also take a look at the difference
in makespan of the same algorithms for 2 different amounts of agents. We can see that the
speed-up (prevmakespan/CUrrentmakespan) starts at 1.84 for the TP-algorithm. This means that
when we double the number of agents (from 5 agents to 10 agents) in the tasks are executed
about 85% faster. In a perfect scenario (for example a scenario where collisions were ignored)
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TP TPTS TA-Prioritized

agents mkspn speed-up mkspn speed-up mkspn speed-up
5 3401 / 3290 / 2079 /
10 1840 1.84 1720 1.91 1341 1.55
20 1027 1.80 923 1.86 713 1.88
30 806 1.27 775 1.19 609 1.17
40 733 1.10 701 1.11 479 1.27
50 682 1.07 670 1.04 478 1

Table 4.1: Table of makespans of TP, TPTS and TA-Prioritized for 5, 10, 20, 30, 40 and 50

agents in the small warehouse
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the speed-up would be equal to 2 as we have twice as many agents available, but this is not
the case here as agents sometimes stand in each other’s way. We can clearly see that the more
agents we add the more congested the warehouse is as the speed-up keeps on decreasing. This is
expected especially if we consider that these results were collected in the small warehouse which
is relatively small for 50 agents.

The same can be said about the TPTS-algorithm as the makespan of the TPTS algorithm is
generally only slightly lower than the makespan of the TP-algorithm.

For the TP and the TPTS algorithm, we can see that the speed-up keeps on decreasing as
the number of agents increases due to the increased congestion of the warehouse. For the TA-
Prioritized algorithm, this is not really the case. We can for example see that going from 10
to 20 agents has a significantly higher speed-up than going from 5 to 10 agents. This can be
explained in 2 ways. The first reason for this varying speed-up is the working of the Prioritized
Pathplanning algorithm that TA-Prioritized uses. As section 2.2.3 explains the TA-Prioritized
algorithm orders the agents in decreasing order of priority. The first agents for which paths
are planned are the agents with the largest estimated execution times. This is done to avoid
increasing the actual execution times of these agents as the makespan will be equal to the largest
actual execution time of all the agents. Agents for which paths are planned later on will have
to wait in order to avoid collisions which increases their actual execution times. This way of
planning paths is less impacted by the congestion of warehouses as the agents with the lowest
actual execution times have to wait in order to avoid collisions. This has a less important impact
on the makespan of the algorithm than in the case of the TP and the TPTS algorithms.

The second reason why the speed-ups of the TA-Prioritized algorithm do not always decrease
when the amount of agents is increased is due to the fact that the TSP solver is not always able
to find the best task sequences in the time it was given (in this case 1000s). This leads to some
agents having less optimal task sequences than others. For 50 agents for example the average
length of the path of each agent was +/- 250 but due to some agents having received more tasks
than others from the TSP solver some agents had very small paths (for example 60) because
they had only 1 or 2 tasks to execute while others had larger paths (for example 478) as they
were executing a lot more tasks. This is however something that we can not observe by only
looking at the makespan of the algorithms. One of the ways to partially solve this problem is to
give the TSP solver more time to compute better task sequences for the agents.

Service Time: From the results of table 4.2 and Figure 4.3 we can see that the average service
time of the algorithms is closely related to the makespan of the algorithm. This is expected as
all of the tasks are made available to all the algorithms at the beginning of the algorithms. The
service time of a task is therefore equal to the timestep at which the task was delivered. As the
makespan is the first timestep at which all the tasks are delivered and all the agents stopped
moving these two will be correlated.

Runtime per timestep: Another interesting metric when looking at the scalability of the
algorithms is the runtime per timestep. The runtime per timestep gives us an idea of how long
the algorithm need on average to compute actions for all the agents in a timestep. This metric
is especially important for the TP and TPTS algorithms as the TA-Prioritized does all of its
computations at the start of the algorithm. The TP and TPTS algorithms look for tasks and
compute new paths for agents when an agent has reached the delivery location of its task so the
computations happen during the execution of the program. A high runtime per second means
that the algorithm will need to pause the movement of the agents in order to compute the actions
of all the agents. Before we take a look at the results of table 4.3 and figure 4.4 it is important to
remember that these metrics have been collected in Python, a dynamically typed programming
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Figure 4.3: Graph of average service times of TP, TPTS and TA-Prioritized for 5, 10, 20, 30, 40

and 50 agents in the small warehouse

TP TPTS TA-Prioritized
agents service time |speed-up service time |speed-up service time |speed-up
5 1735 / 1630.37 / 982.99 /

10 934 1.86 860.09 1.90 547.23 1.80
20 515 1.81 430.76 2.00 317.54 1.72
30 383 1.27 301.03 1.43 231.99 1.37
40 314 1.01 273.98 1.10 196.66 1.80
50 278 1.07 231.65 1.18 196.52 1.00

Table 4.2: Table of average service time of TP, TPTS and TA-Prioritized for 5, 10, 20, 30, 40

and 50 agents in the small warehouse
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language. In a real-world environment, one would implement these approaches using a more
appropriate programming language such as the original implementation of the algorithms in
C++ (Ma et al., 2017).

Runtime per timestep
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Figure 4.4: Graph of runtimes per timestep of TP, TPTS and TA-Prioritized for 5, 10, 20, 30,

40 and 50 agents in the small warehouse

TP TPTS TA-Prioritized
agents runtime/t  |slowdown |runtime/t |[slowdown |runtime/t |slowdown
5 0.09s / 0.12s / 0.25s /

10 0.32s 3.55 0.76s 6.33 0.61s 2.44
20 1.03s 3.22 2.06s 2.7 4.35s 7.13
30 1.90s 1.84 4.14s 2.01 3.26s 0.75
40 2.78s 1.46 6.02s 1.45 5.08s 1.56
50 3.82s 1.37 8.24s 1.39 11.79s 2.32

Table 4.3: Table of run-times per timestep of TP, TPTS and TA-Prioritized for 5, 10, 20, 30, 40
and 50 agents in the small warehouse

The first thing we can notice when looking at the results of table 4.3 is that increasing
the number of agents in the warehouse in any algorithm significantly increases the runtime per
timestep. We can for example see that the service time per timestep for the Token Passing
algorithm with 5 agents is about 80ms while the service time per timestep for 50 agents is about
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4 seconds. This means that the algorithm on average needs 4 seconds in each timestep to decide
actions for all the agents in a warehouse containing 50 agents. This increase is expected as the
algorithm needs to look for more tasks and calculate more paths in each timestep as there are
more agents.

This is an important metric to take into account if we consider using these algorithms in
a real-world environment as this indicates that for 50 agents the algorithm needs on average 4
seconds before it can compute the actions that need to be executed. If the agents in our real-
world environment can move from one position to another in less than 4 seconds this means that
our agents will need to wait on our algorithm to compute the next actions. This is not optimal
especially in our visualization where agents only need 1 second to move in between two locations.
Running the visualization with 50 agents causes the algorithm to “lag“ in each timestep while
the actions are computed.

This can however be adapted in the visualization by changing the number of time agents need
to move in the configuration file. It is also important to consider that the results presented in this
paper are computed using Python implementations of the algorithms. Implementations in other
programming languages such as (Ma et al., 2017) reports that their C# implementation of the
TP algorithm never produced running times per timestep larger than 10ms and that the TPTS
algorithm never produced running times per timestep larger than 200ms which are significantly
more acceptable.

Conclusion Based on the results of this section we can conclude that in smaller warehouse
environments the algorithm that produces the best results is the TA-Prioritized algorithm as
it consistently produces significantly smaller makespans and average service times than the TP
and TPTS algorithms. When we look at the runtime per timestep of the 3 algorithms we can
however see that this lower makespan and service time comes at a cost as the running time per
timestep of the TA-Prioritized algorithm is 3 times larger than the running time per timestep
of the TP algorithm. As the TA-Prioritized algorithm can be ran beforehand this is however
still acceptable. The TA-Prioritized algorithm should therefore always be the first algorithm to
consider in a smaller warehouse environment. The TPTS algorithm is the second best algorithm
in terms of makespan and service time. It produces makespans and service times slightly smaller
than the makespans and service times of the TPTS algorithm but takes on average twice as long
time. In our simulated environments where agents need 1000ms to execute the actions that they
are given we could use the TPTS algorithm until 10 agents without experiencing any lag. For the
TP-algorithm we could use up until 20 agents with minor lag. We can see that if we only look at
the runtime per timestep of both algorithms it is better to use the TP-algorithm with 20 agents
than the TPTS with 10 agents in the smaller warehouse environment. For our small warehouse
environment it is therefore better to use the TP algorithm for a large number of agents due to
its running time even though it produces slightly larger makespans and service times than the
TPTS algorithm.

4.3.2 Scalability in terms of warehouse size

In this section we compare the results of the previous section which were collected in the small
warehouse environment with results of the algorithms in the large warehouse environment. This
warehouse environment is twice as large as the small warehouse.

Makespan: When we compare the makespan of the algorithms in the small warehouse environ-
ment siwht the makespan of the algorithms in the large warehouse environment we can see from
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Figure 4.5: Makespan of 5, 10, 20, 30, 40 and 50 agents of TP, TPTS and TA-Prioritized in the
small and large warehouse environments

Figure 4.5 that there is a similar trend. The makespans in the larger warehouse environment are
significantly larger than the makespans in the small warehouse environment but we can see that
the difference in makespan between the different algorithms is similar in both warehouse envi-
ronments. We can see that the difference in makespan between the TP and the TPTS algorithm
in the large warehouse environment is slightly larger than the difference in the smaller warehouse
environment. This is expected as the length of the average paths to the pickup locations of
tasks is larger. This allows agents to reduce the makespan more when they swap tasks. We can
also see that the difference between the three algorithms for 50 agents in the larger warehouse
environment is smaller than the difference between the three algorithms for 50 agents in the
small warehouse environment. This is due to the fact that the TA-Prioritized algorithm is able
to deal with congestion better than the other 2 algorithms due to the Prioritzed Pathplanning
algorithm. The TP and TPTS algorithms however were more limited due to congestion in the
small warehouse environment. As the large warehouse environment is twice as large and the
number of agents and tasks is the same in both environments this gives the algorithms more
space and limits the congestion which allows them to produce smaller makespans.

Service Time Similarly to the service time of the different agents in the small warehouse
environment we can see from Figure 4.6 that the service time of the algorithms in the large
warehouse environment follows the same trend as the service time of the algorithms in the small
warehouse environment. This is expected as the service time of the tasks is equal to the timestep
at which the task was delivered as all the tasks are released at the beginning. The makespan is
the first timestep at which all tasks have been delivered and the agents have stopped moving.
It therefore makes sense that the average service time of the tasks follows the same trend as the
makespan.

Runtime per timestep Finally, we look at the runtime per timestep of the different algo-
rithms in Figure 4.7. This is the first metric where we can see a clear difference between the
results in the small warehouse environment and the results in the large warehouse environment.
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32 CHAPTER 4. RESULTS

1800

1600

1400

1200

1000

Service Time

400

200

3000

Algorithms Algorithms
e TP e TP
o TS ° TS

® TA-Prioritized ® TA-Prioritized
2500

2000

1500

Service Time

1000

500

Agents Agents

(a) Small warehouse environment (b) Large warehouse environment

Figure 4.6: Service time of 5, 10, 20, 30, 40 and 50 agents of TP, TPTS and TA-Prioritized in
the small and large warehouse environments
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Figure 4.7: Runtime per timestep of 5, 10, 20, 30, 40 and 50 agents of TP, TPTS and TA-
Prioritized in the small and large warehouse environments
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We can see that in the small warehouse environment the TA-Prioritized algorithm has a sig-
nificantly larger runtime per timestep than the TP and the TPTS algorithm while in the large
warehouse environment we can see that the TA-Prioritized algorithm has the smallest runtime
per timestep. This is due to the larger size of the warehouse which makes it easier for the path-
planning algorithm to plan paths. The calculation of actual execution times for all the agents
in the Prioritzed Pathplanning algorithm of TA-Prioritized is parallelized, but before the next
agent can be chosen all the actual execution times have to be calculated. This means that if
planning the path of any of the agents take significantly more time than planning the paths of
the other agents the benefits of the parallelization are lost. As the large warehouse environment
is twice as large as the small warehouse environment is is significantly easier to plan collision-free
paths which reduces the time it takes to plan paths for the agents. This explains the significantly
lower runtime per timestep of the TA-Prioritzed algorithm.

Conclusion: When we compared the algorithms in a small warehouse environment in the
previous section we noted that the best algorithm in terms of makespan and service time was
the TA-Prioritized algorithm but that it had a significantly larger runtime per timestep than the
TP and TPTS algorithms. This is not the case anymore in the large warehouse environment
which makes it clear that the TA-Prioritized algorithm is by far the best algorithm to use in
a larger warehouse environment. If the TA-Prioritzed algorithm can not be used because the
tasks can not be known beforehand the TPTS algorithm produces again better makespans and
average service times than the TP algorithm which makes it the second best algorithm in terms of
makespan and average service time. The difference between both algorithms in terms of runtime
per timestep is also significantly lower when we look at larger number of agents such as 40 and 50
agents. From this we can conclude that the TPTS algorithm performs better in larger warehouse
environments than the TP algorithm.

4.3.3 Performance impact of rotations

One of the modifications that were made to the space-time A* algorithm that is used by the
three algorithms is the addition of rotations. This modification significantly slowed down the
performance of the algorithm. In order to measure the performance loss caused by the addition
of rotations, we collected the following metrics for both implementations: the average length
of paths planned, the average size of the search space during the planning of a path, and the
average time it takes for the algorithm to come up with a path.

A* without rotations A* with rotations
paths | runtime | length | state space | runtime | length | state space
10 2.95ms 18 59 34.25ms 21 216
20 15.48ms 22 103 55.18ms 25 257
40 37.99ms 22 94 145.91ms 25 352
80 56.90ms 25 123 169.73ms 26 317

Table 4.4: Table of average runtime per timestep of TP, TPTS and TA-Prioritized for 5, 10, 20,
30, 40 and 50 agents in the small warehouse

From the results of Table 4.4 we can see that even though the average length of the planned
paths is not significantly larger when adding rotations, the average runtime needed to plan the
paths and the average size of the state space are significantly larger. Planning 10 collision-free
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paths using the A* implementation without the rotations only takes about 3ms while this takes
10 times longer with the A* implementation with rotations. The state space, all the possible
states that the algorithm can select to expand during the search, is also 4 times larger for the
A* implementation with rotations. We can therefore conclude that rotations have a big impact
on the performance of the algorithms and should only be used when necessary to avoid a major
performance loss.

4.3.4 Performance of parallelized Prioritized Path-planning

As we have seen in the previous section the addition of rotations to the space-time A* algorithm
significantly increases the runtime of planning a single path. This decreases the performance of
the three algorithms: TP, TPTS, and TA-Prioritized as they all use the same implementation. In
section 3.2.3 we mention that the performance loss due to the addition of rotations is especially
important for the TA-Prioritized algorithm due to the working of the algorithm and we propose
in that section to parallelize part of the algorithm. In this section we measure the difference
in performance between the modified implementation of TA-Prioritized that uses parallelization
and the original implementation of TA-Prioritized that does all the computations sequentially.
Table 4.5 presents these results.

Non-Parallelized Parallelized
agents runtime/t runtime/t | speed-up
5 0.45s 0.25s 1.80
10 2.29s 0.61s 3.75
20 36.48s 4.35s 8.38

Table 4.5: Table of average runtime per timestep of TA-Prioritized with and without paralleliza-
tion for 5, 10, 20 agents in the small warehouse

From the results of table 4.5 we can clearly see why this last modification was needed if we
plan on using the TA-Prioritized algorithm with a large number of agents. We can see that the
speed-up is relatively small for a small number of agents such as 5 as the algorithm only needs
to plan 14 paths and there is a relatively low number of constraints as the algorithm has at most
4 other paths that it needs to avoid collisions with. When we look at a larger amount of agents
such as 20 we can see that the non-parallelized algorithm takes almost twice as long to compute
the paths of the 20 agents as the parallelized algorithm takes to compute the paths for 50 agents.
A runtime per timestep of 19 for 20 agents corresponds to about 4 hours as the makespan of the
algorithm for 20 agents was 713 as we can see in table 4.5. Even though we can calculate all
these paths beforehand as the TA-Prioritized algorithm is an algorithm for the offline variant of
the MAPD problem this runtime is already extremely large for the number of agents. Especially
when we look at the fact that the runtime per timestep for 20 agents is 8 times larger than
the runtime per timestep for 10 agents. Based on these results we can expect the algorithm to
take more than 12 hours to compute the paths of 50 agents in the relatively small warehouse
environment that we used. Based on these results we can therefore conclude that running the
original implementation of the TA-Prioritized algorithm is not an option if we want to support
a large number of agents. In that case, the modified TA-Prioritized algorithm is a better choice.
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Conclusion

In this paper, we analyzed, implemented and visualized the MAPD-problem and three approaches
to the problem: the Token Passing (TP) algorithm, the Token Passing with Task Swapping
(TPTS) algorithm and the Task-Allocation and Prioritized Pathplanning (TA-Prioritized) algo-
rithm. We implemented and visualized these approaches by using the Unity game engine and
the ML-agents platform to create a tool that is able to support various warehouse environments.
Finally, we compared these approaches in the setting of automated warehouses and concluded
that the TA-Prioritzed algorithm offers the best performance in smaller and larger warehouse
environments. When the TA-Prioritzed algorithm can not be used we concluded that the TP
algorithm is more suitable for a larger number of agents in smaller warehouse environments while
the TPTS algorithm is more suited for larger warehouse environments. We also concluded that
supporting the rotations of agents significantly reduces the performance of the algorithms and
rotations should only be used if necessary. Finally we concluded that the parallelized imple-
mentation of the TA-Prioritzed algorithm outperforms the original implementation of (Cawood,
2020) when rotations are added to the algorithms.

Future Work: The tool currently supports three different approaches to the MAPD problem
but can be extended with others approaches. In this paper we for example only focused on one
algorithm for the offline variant of the MAPD problem, the TA-Prioritzed algorithm, while there
exists other approaches such as the Task-Allocation and Hybrid Path Planning algorithm (Ma
et al., 2017). Other planning approaches such as the idea of converting the MAPD problem to a
Spatial Task Allocation Problem proposed by (Claes et al., 2017) can also be considered. Next to
the traditional planning algorithms that this paper focused on other approaches such as learning
approaches (e.g reinforcement learning (Sutton & Barto, 1998)) could also be considered.
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