Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
G
garbage-bot
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Deploy
Releases
Container Registry
Model registry
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Admin message
Setting up 2FA is now mandatory for all users.
Show more breadcrumbs
Mathieu Reymond
garbage-bot
Commits
9b92f340
Commit
9b92f340
authored
7 years ago
by
fouad5
Browse files
Options
Downloads
Plain Diff
merge
parents
4301adb9
8b52e2aa
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
src/test/test-trees.py
+309
-0
309 additions, 0 deletions
src/test/test-trees.py
with
309 additions
and
0 deletions
src/test/test-trees.py
0 → 100644
+
309
−
0
View file @
9b92f340
# -*- coding: utf-8 -*-
"""
Test for decision trees.
"""
import
pandas
as
pd
import
subprocess
from
copy
import
deepcopy
from
sklearn.tree
import
DecisionTreeClassifier
,
export_graphviz
# The decision tree of sklearn works with numerical values, hence all values
# are mapped as integers
DIRECTION
=
'
direction
'
RIGHT
=
0
LEFT
=
1
COLOR
=
'
color
'
RED
=
0
GREEN
=
1
BLUE
=
2
SIZE
=
'
size
'
SMALL
=
0
MEDIUM
=
1
BIG
=
2
SHAPE
=
'
shape
'
CUBE
=
0
SPHERE
=
1
CYLINDER
=
2
# Assuming input data will be between 5 and 10 samples to show what is going
# left and what is going right the following objects are defined as tests for
# the required input
# Green objects intended to go to the Right
training_data_0
=
[{
COLOR
:
GREEN
,
SIZE
:
MEDIUM
,
SHAPE
:
CYLINDER
,
DIRECTION
:
RIGHT
},
{
COLOR
:
GREEN
,
SIZE
:
SMALL
,
SHAPE
:
CUBE
,
DIRECTION
:
RIGHT
},
{
COLOR
:
GREEN
,
SIZE
:
BIG
,
SHAPE
:
CYLINDER
,
DIRECTION
:
RIGHT
},
{
COLOR
:
BLUE
,
SIZE
:
MEDIUM
,
SHAPE
:
SPHERE
,
DIRECTION
:
LEFT
},
{
COLOR
:
RED
,
SIZE
:
SMALL
,
SHAPE
:
CUBE
,
DIRECTION
:
LEFT
},
{
COLOR
:
BLUE
,
SIZE
:
BIG
,
SHAPE
:
CYLINDER
,
DIRECTION
:
LEFT
},
{
COLOR
:
RED
,
SIZE
:
MEDIUM
,
SHAPE
:
SPHERE
,
DIRECTION
:
LEFT
}]
# Cylinders and Red objects intended to go to the right
training_data_1
=
[{
COLOR
:
RED
,
SIZE
:
MEDIUM
,
SHAPE
:
CYLINDER
,
DIRECTION
:
RIGHT
},
{
COLOR
:
RED
,
SIZE
:
SMALL
,
SHAPE
:
CUBE
,
DIRECTION
:
RIGHT
},
{
COLOR
:
BLUE
,
SIZE
:
BIG
,
SHAPE
:
CYLINDER
,
DIRECTION
:
RIGHT
},
{
COLOR
:
GREEN
,
SIZE
:
SMALL
,
SHAPE
:
CYLINDER
,
DIRECTION
:
RIGHT
},
{
COLOR
:
RED
,
SIZE
:
BIG
,
SHAPE
:
CYLINDER
,
DIRECTION
:
RIGHT
},
{
COLOR
:
BLUE
,
SIZE
:
MEDIUM
,
SHAPE
:
SPHERE
,
DIRECTION
:
LEFT
},
{
COLOR
:
BLUE
,
SIZE
:
BIG
,
SHAPE
:
CUBE
,
DIRECTION
:
LEFT
},
{
COLOR
:
BLUE
,
SIZE
:
SMALL
,
SHAPE
:
CUBE
,
DIRECTION
:
LEFT
},
{
COLOR
:
GREEN
,
SIZE
:
SMALL
,
SHAPE
:
CUBE
,
DIRECTION
:
LEFT
},
{
COLOR
:
GREEN
,
SIZE
:
MEDIUM
,
SHAPE
:
SPHERE
,
DIRECTION
:
LEFT
}]
# Only red big cubes intended to go Right
training_data_2
=
[{
COLOR
:
RED
,
SIZE
:
BIG
,
SHAPE
:
CUBE
,
DIRECTION
:
RIGHT
},
{
COLOR
:
RED
,
SIZE
:
SMALL
,
SHAPE
:
CYLINDER
,
DIRECTION
:
LEFT
},
{
COLOR
:
BLUE
,
SIZE
:
BIG
,
SHAPE
:
CUBE
,
DIRECTION
:
LEFT
},
{
COLOR
:
BLUE
,
SIZE
:
MEDIUM
,
SHAPE
:
SPHERE
,
DIRECTION
:
LEFT
},
{
COLOR
:
BLUE
,
SIZE
:
SMALL
,
SHAPE
:
SPHERE
,
DIRECTION
:
LEFT
},
{
COLOR
:
GREEN
,
SIZE
:
BIG
,
SHAPE
:
CUBE
,
DIRECTION
:
LEFT
},
{
COLOR
:
GREEN
,
SIZE
:
MEDIUM
,
SHAPE
:
CYLINDER
,
DIRECTION
:
LEFT
}]
# Blue Cubes and Small Spheres intended to go Right
training_data_3
=
[{
COLOR
:
BLUE
,
SIZE
:
BIG
,
SHAPE
:
CUBE
,
DIRECTION
:
RIGHT
},
{
COLOR
:
RED
,
SIZE
:
SMALL
,
SHAPE
:
SPHERE
,
DIRECTION
:
RIGHT
},
{
COLOR
:
BLUE
,
SIZE
:
SMALL
,
SHAPE
:
CUBE
,
DIRECTION
:
RIGHT
},
{
COLOR
:
GREEN
,
SIZE
:
SMALL
,
SHAPE
:
SPHERE
,
DIRECTION
:
RIGHT
},
{
COLOR
:
RED
,
SIZE
:
MEDIUM
,
SHAPE
:
SPHERE
,
DIRECTION
:
LEFT
},
{
COLOR
:
RED
,
SIZE
:
SMALL
,
SHAPE
:
CUBE
,
DIRECTION
:
LEFT
},
{
COLOR
:
BLUE
,
SIZE
:
SMALL
,
SHAPE
:
CYLINDER
,
DIRECTION
:
LEFT
},
{
COLOR
:
GREEN
,
SIZE
:
MEDIUM
,
SHAPE
:
CUBE
,
DIRECTION
:
LEFT
}]
test_data_0
=
[{
COLOR
:
RED
,
SIZE
:
BIG
,
SHAPE
:
CUBE
},
{
COLOR
:
RED
,
SIZE
:
MEDIUM
,
SHAPE
:
CYLINDER
},
{
COLOR
:
RED
,
SIZE
:
SMALL
,
SHAPE
:
CUBE
},
{
COLOR
:
BLUE
,
SIZE
:
MEDIUM
,
SHAPE
:
CYLINDER
},
{
COLOR
:
BLUE
,
SIZE
:
SMALL
,
SHAPE
:
SPHERE
},
{
COLOR
:
GREEN
,
SIZE
:
SMALL
,
SHAPE
:
SPHERE
},
{
COLOR
:
GREEN
,
SIZE
:
BIG
,
SHAPE
:
CUBE
}]
# Trees definition
# tree1 = DecisionTreeClassifier(
# criterion="entropy", random_state=100, max_depth=3)
# tree2 = DecisionTreeClassifier(
# criterion="gini", random_state=100, max_depth=3)
tree0
=
DecisionTreeClassifier
(
criterion
=
'
entropy
'
)
tree1
=
DecisionTreeClassifier
(
criterion
=
'
gini
'
)
# TODO: Make this method work if required
def
visualize_tree
(
tree
,
feature_names
):
"""
Create tree png using graphviz.
Args
----
tree -- scikit-learn DecsisionTree.
feature_names -- list of feature names.
"""
with
open
(
"
dt.dot
"
,
'
w
'
)
as
f
:
export_graphviz
(
tree
,
out_file
=
f
,
feature_names
=
feature_names
)
command
=
[
"
dot
"
,
"
-Tpng
"
,
"
dt.dot
"
,
"
-o
"
,
"
dt.png
"
]
try
:
subprocess
.
check_call
(
command
)
except
:
exit
(
"
Could not run dot, ie graphviz, to
"
"
produce visualization
"
)
def
get_trees
():
"""
Get a list of trees to use in the experiment.
"""
return
[
tree0
,
tree1
]
def
get_training_data
():
"""
Get the list of data frames to train the trees.
"""
training_dfs
=
[]
for
td
in
[
training_data_0
,
training_data_1
,
training_data_2
,
training_data_3
]:
df
=
pd
.
DataFrame
(
td
)
# TODO: hardcode these values as they would not change
features
=
list
(
df
.
columns
[:])
features
.
remove
(
DIRECTION
)
y
=
df
[
DIRECTION
]
X
=
df
[
features
]
training_dfs
.
append
((
deepcopy
(
X
),
deepcopy
(
y
)))
return
training_dfs
def
get_test_data
():
"""
Get the list of data for testing the trees.
"""
return
[
test_data_0
]
def
run
():
"""
Main method to run the tests.
"""
for
i_t
,
tree
in
enumerate
(
get_trees
()):
# print("Tree %i" % i_t)
for
i_td
,
td
in
enumerate
(
get_training_data
()):
tree
.
fit
(
td
[
0
],
td
[
1
])
for
test_d
in
get_test_data
():
to_test
=
pd
.
DataFrame
(
test_d
)
predicted
=
tree
.
predict
(
to_test
)
predicted
=
[
'
RIGHT
'
if
x
==
RIGHT
else
'
LEFT
'
for
x
in
predicted
]
print
(
"
Tree %i, training data %i, prediction %s
"
%
(
i_t
,
i_td
,
predicted
))
run
()
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment