Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
CM-GP
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Admin message
Setting up 2FA is now mandatory for all users.
Show more breadcrumbs
Senne Deproost
CM-GP
Commits
3d659075
Commit
3d659075
authored
8 months ago
by
Denis Steckelmacher
Browse files
Options
Downloads
Patches
Plain Diff
ProgramOptimizer that fits entire (large) actions
parent
d4afcee5
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
TD3_program_synthesis.py
+21
-20
21 additions, 20 deletions
TD3_program_synthesis.py
optim.py
+39
-25
39 additions, 25 deletions
optim.py
postfix_program.py
+20
-22
20 additions, 22 deletions
postfix_program.py
with
80 additions
and
67 deletions
TD3_program_synthesis.py
+
21
−
20
View file @
3d659075
...
...
@@ -49,7 +49,7 @@ class Args:
"""
the user or org name of the model repository from the Hugging Face Hub
"""
# Algorithm specific arguments
env_id
:
str
=
"
SimpleAction
Only
-v0
"
env_id
:
str
=
"
Simple
Large
Action-v0
"
"""
the id of the environment
"""
total_timesteps
:
int
=
int
(
1e4
)
"""
total timesteps of the experiments
"""
...
...
@@ -69,14 +69,14 @@ class Args:
"""
the scale of exploration noise
"""
learning_starts
:
int
=
256
"""
timestep to start learning
"""
policy_frequency
:
int
=
3
policy_frequency
:
int
=
100
"""
the frequency of training policy (delayed)
"""
noise_clip
:
float
=
0.5
"""
noise clip parameter of the Target Policy Smoothing Regularization
"""
# Parameters for the program optimizer
num_individuals
:
int
=
100
num_genes
:
int
=
5
num_genes
:
int
=
4
num_eval_runs
:
int
=
10
num_generations
:
int
=
20
...
...
@@ -115,19 +115,22 @@ class QNetwork(nn.Module):
return
x
def
get_state_actions
(
program
,
obs
,
env
,
args
,
grad_required
=
False
):
def
get_state_actions
(
program
_optimizer
,
obs
,
env
,
args
,
grad_required
=
False
):
program_actions
=
[]
obs
=
obs
.
detach
().
numpy
()
for
i
,
o
in
enumerate
(
obs
):
action
=
np
.
zeros
(
env
.
action_space
.
shape
,
dtype
=
np
.
float32
)
for
eval_run
in
range
(
args
.
num_eval_runs
):
action
+=
program
(
o
,
len_output
=
env
.
action_space
.
shape
[
0
])
for
eval_run
in
range
(
1
):
action
+=
program_optimizer
.
get_actions_from_solution
(
program_optimizer
.
best_solution
,
o
)
program_actions
.
append
(
action
/
args
.
num_eval_runs
)
program_actions
=
torch
.
tensor
(
program_actions
,
requires_grad
=
grad_required
)
program_actions
=
torch
.
tensor
(
np
.
array
(
program_actions
)
,
requires_grad
=
grad_required
)
return
program_actions
...
...
@@ -165,7 +168,7 @@ def run_synthesis(args: Args):
assert
isinstance
(
env
.
action_space
,
gym
.
spaces
.
Box
),
"
only continuous action space is supported
"
# Actor is a learnable program
program_optimizer
=
ProgramOptimizer
(
args
)
program_optimizer
=
ProgramOptimizer
(
args
,
env
.
action_space
.
shape
)
qf1
=
QNetwork
(
env
).
to
(
device
)
qf2
=
QNetwork
(
env
).
to
(
device
)
...
...
@@ -187,23 +190,20 @@ def run_synthesis(args: Args):
# TRY NOT TO MODIFY: start the game
obs
,
_
=
env
.
reset
(
seed
=
args
.
seed
)
for
global_step
in
range
(
args
.
total_timesteps
):
# Get best program from optimizer
program
=
program_optimizer
.
get_best_program
()
fitness
=
program_optimizer
.
best_fitness
# Print program
print
(
f
'
Best program:
{
program
}
, with fitness
{
fitness
}
'
)
for
global_step
in
range
(
args
.
total_timesteps
):
# ALGO LOGIC: put action logic here
if
global_step
<
args
.
learning_starts
:
action
=
env
.
action_space
.
sample
()
else
:
with
torch
.
no_grad
():
action
=
program
(
torch
.
Tensor
(
obs
).
to
(
device
).
detach
().
numpy
(),
len_output
=
env
.
action_space
.
shape
[
0
])
action
=
program_optimizer
.
get_actions_from_solution
(
program_optimizer
.
best_solution
,
obs
)
# TRY NOT TO MODIFY: execute the game and log data.
print
(
f
'
Program
{
program
}
gives action
{
action
}
'
)
next_obs
,
reward
,
termination
,
truncation
,
info
=
env
.
step
(
action
)
# TRY NOT TO MODIFY: record rewards for plotting purposes
...
...
@@ -227,7 +227,7 @@ def run_synthesis(args: Args):
)
# Go over all observations the buffer provides
next_state_actions
=
get_state_actions
(
program
,
data
.
next_observations
,
env
,
args
)
next_state_actions
=
get_state_actions
(
program
_optimizer
,
data
.
next_observations
,
env
,
args
)
next_state_actions
=
(
next_state_actions
+
clipped_noise
).
clamp
(
env
.
action_space
.
low
[
0
],
env
.
action_space
.
high
[
0
]).
float
()
...
...
@@ -251,18 +251,19 @@ def run_synthesis(args: Args):
# Optimize the program
if
global_step
%
args
.
policy_frequency
==
0
:
program_actions
=
get_state_actions
(
program
,
data
.
observations
,
env
,
args
,
grad_required
=
True
)
program_actions
=
get_state_actions
(
program
_optimizer
,
data
.
observations
,
env
,
args
,
grad_required
=
True
)
program_objective
=
qf1
(
data
.
observations
,
program_actions
).
mean
()
program_objective
.
backward
()
improved_actions
=
program_actions
+
0.1
*
program_actions
.
grad
print
(
program_actions
,
improved_actions
)
RES
.
append
(
improved_actions
[
0
].
detach
().
numpy
())
program_optimizer
.
fit
(
states
=
data
.
observations
.
detach
().
numpy
(),
actions
=
improved_actions
.
detach
().
numpy
())
#actions=np.ones(shape=(args.batch_size, 1))*0.5)
# Print program
program_optimizer
.
print_best_solution
()
# update the target network
for
param
,
target_param
in
zip
(
qf1
.
parameters
(),
qf1_target
.
parameters
()):
...
...
This diff is collapsed.
Click to expand it.
optim.py
+
39
−
25
View file @
3d659075
...
...
@@ -8,10 +8,11 @@ from dataclasses import dataclass
from
postfix_program
import
Program
,
NUM_OPERATORS
class
ProgramOptimizer
:
def
__init__
(
self
,
config
):
def
__init__
(
self
,
config
,
action_shape
):
# Create the initial population
self
.
initial_program
=
[
-
1.0
]
*
(
config
.
num_genes
*
2
)
# Mean and log_std for each gene
self
.
action_shape
=
action_shape
self
.
initial_program
=
[
0.0
]
*
(
config
.
num_genes
*
2
*
action_shape
[
0
])
# Mean and log_std for each gene, for each action dimension
self
.
best_solution
=
self
.
initial_program
self
.
best_fitness
=
None
...
...
@@ -19,39 +20,48 @@ class ProgramOptimizer:
self
.
config
=
config
self
.
initial_population
=
[
np
.
array
(
self
.
initial_program
)
for
i
in
range
(
config
.
num_individuals
)]
def
get_best_program
(
self
):
return
Program
(
genome
=
self
.
best_solution
)
def
get_actions_from_solution
(
self
,
solution
,
state
):
# One program per action dimension
program_length
=
self
.
config
.
num_genes
*
2
programs
=
[
Program
(
genome
=
solution
[
i
*
program_length
:
(
i
+
1
)
*
program_length
])
for
i
in
range
(
self
.
action_shape
[
0
])
]
def
fit
(
self
,
states
,
actions
):
"""
states is a batch of states, shape (N, state_shape)
actions is a batch of actions, shape (N, action_shape), we assume continuous actions
"""
return
np
.
array
([
p
(
state
)
for
p
in
programs
],
dtype
=
np
.
float32
)
def
print_best_solution
(
self
):
program_length
=
self
.
config
.
num_genes
*
2
def
fitness_func
(
ga_instance
,
solution
,
solution_idx
):
batch_size
=
states
.
shape
[
0
]
action_size
=
actions
.
shape
[
1
]
sum_error
=
0.0
for
i
in
range
(
self
.
action_shape
[
0
]):
p
=
Program
(
genome
=
self
.
best_solution
[
i
*
program_length
:
(
i
+
1
)
*
program_length
])
print
(
f
'
a[
{
i
}
] =
'
,
p
.
run_program
([
0.0
],
do_print
=
True
))
program
=
Program
(
genome
=
solution
)
def
_fitness_func
(
self
,
ga_instance
,
solution
,
solution_idx
):
batch_size
=
self
.
states
.
shape
[
0
]
sum_error
=
0.0
# Evaluate the program several times, because evaluations are stochastic
for
eval_run
in
range
(
self
.
config
.
num_eval_runs
):
for
index
in
range
(
batch_size
):
action
=
program
(
states
[
index
],
len_output
=
action_size
)
desired_action
=
actions
[
index
]
# Evaluate the program several times, because evaluations are stochastic
for
eval_run
in
range
(
self
.
config
.
num_eval_runs
):
for
index
in
range
(
batch_size
):
action
=
self
.
get_actions_from_solution
(
solution
,
self
.
states
[
index
]
)
desired_action
=
self
.
actions
[
index
]
sum_error
+=
np
.
mean
((
action
-
desired_action
)
**
2
)
sum_error
+=
np
.
mean
((
action
-
desired_action
)
**
2
)
fitness
=
-
(
sum_error
/
(
batch_size
+
self
.
config
.
num_eval_runs
))
fitness
=
-
(
sum_error
/
(
batch_size
+
self
.
config
.
num_eval_runs
))
if
self
.
best_fitness
is
None
or
fitness
>
self
.
best_fitness
:
self
.
best_solution
=
solution
self
.
best_fitness
=
fitness
return
fitness
return
fitness
def
fit
(
self
,
states
,
actions
):
"""
states is a batch of states, shape (N, state_shape)
actions is a batch of actions, shape (N, action_shape), we assume continuous actions
"""
self
.
states
=
states
# picklable self._fitness_func needs these instance variables
self
.
actions
=
actions
self
.
ga_instance
=
pygad
.
GA
(
fitness_func
=
fitness_func
,
fitness_func
=
self
.
_
fitness_func
,
initial_population
=
self
.
initial_population
,
num_generations
=
self
.
config
.
num_generations
,
num_parents_mating
=
self
.
config
.
num_parents_mating
,
...
...
@@ -68,6 +78,7 @@ class ProgramOptimizer:
mutation_type
=
"
random
"
,
random_mutation_max_val
=
10
,
random_mutation_min_val
=-
10
,
parallel_processing
=
[
"
process
"
,
None
]
)
self
.
ga_instance
.
run
()
...
...
@@ -75,6 +86,9 @@ class ProgramOptimizer:
# Allow the population to survive
self
.
initial_population
=
self
.
ga_instance
.
population
# Best solution for now
self
.
best_solution
=
self
.
ga_instance
.
best_solution
()[
0
]
@dataclass
class
Config
:
num_individuals
:
int
=
1000
...
...
This diff is collapsed.
Click to expand it.
postfix_program.py
+
20
−
22
View file @
3d659075
...
...
@@ -25,11 +25,12 @@ class Operator:
OPERATORS
=
[
Operator
(
'
<end>
'
,
0
,
None
),
Operator
(
'
<
'
,
2
,
lambda
a
,
b
:
float
(
a
<
b
)),
Operator
(
'
>
'
,
2
,
lambda
a
,
b
:
float
(
a
>
b
)),
Operator
(
'
==
'
,
2
,
lambda
a
,
b
:
float
(
a
==
b
)),
Operator
(
'
!=
'
,
2
,
lambda
a
,
b
:
float
(
a
!=
b
)),
Operator
(
'
abs
'
,
1
,
lambda
a
:
abs
(
a
)),
Operator
(
'
sin
'
,
1
,
lambda
a
:
math
.
sin
(
a
)),
Operator
(
'
cos
'
,
1
,
lambda
a
:
math
.
cos
(
a
)),
Operator
(
'
exp
'
,
1
,
lambda
a
:
math
.
exp
(
min
(
a
,
10.0
))),
Operator
(
'
sqrt
'
,
1
,
lambda
a
:
math
.
sqrt
(
max
(
a
,
0.0
))),
Operator
(
'
neg
'
,
1
,
lambda
a
:
-
a
),
Operator
(
'
+
'
,
2
,
lambda
a
,
b
:
a
+
b
),
Operator
(
'
-
'
,
2
,
lambda
a
,
b
:
a
-
b
),
Operator
(
'
*
'
,
2
,
lambda
a
,
b
:
a
*
b
),
...
...
@@ -38,13 +39,12 @@ OPERATORS = [
Operator
(
'
max
'
,
2
,
lambda
a
,
b
:
max
(
a
,
b
)),
Operator
(
'
min
'
,
2
,
lambda
a
,
b
:
min
(
a
,
b
)),
Operator
(
'
trunc
'
,
1
,
lambda
a
:
float
(
int
(
a
))),
Operator
(
'
abs
'
,
1
,
lambda
a
:
abs
(
a
)),
Operator
(
'
neg
'
,
1
,
lambda
a
:
-
a
),
Operator
(
'
sin
'
,
1
,
lambda
a
:
math
.
sin
(
a
)),
Operator
(
'
cos
'
,
1
,
lambda
a
:
math
.
cos
(
a
)),
Operator
(
'
exp
'
,
1
,
lambda
a
:
math
.
exp
(
min
(
a
,
10.0
))),
Operator
(
'
sqrt
'
,
1
,
lambda
a
:
math
.
sqrt
(
max
(
a
,
0.0
))),
Operator
(
'
<
'
,
2
,
lambda
a
,
b
:
float
(
a
<
b
)),
Operator
(
'
>
'
,
2
,
lambda
a
,
b
:
float
(
a
>
b
)),
Operator
(
'
==
'
,
2
,
lambda
a
,
b
:
float
(
a
==
b
)),
Operator
(
'
!=
'
,
2
,
lambda
a
,
b
:
float
(
a
!=
b
)),
Operator
(
'
?
'
,
3
,
lambda
cond
,
a
,
b
:
a
if
cond
>
0.5
else
b
),
Operator
(
'
<end>
'
,
0
,
None
),
]
NUM_OPERATORS
=
len
(
OPERATORS
)
...
...
@@ -56,15 +56,13 @@ class Program:
def
__str__
(
self
):
return
repr
(
self
.
run_program
(
inp
=
[
1
],
do_print
=
True
))
def
__call__
(
self
,
inp
,
len_output
=
None
):
def
__call__
(
self
,
inp
):
res
=
self
.
run_program
(
inp
,
do_print
=
False
)
# If the desired output length is given, pad the result with zeroes if needed
if
len_output
:
res
=
np
.
array
(
res
+
[
0.0
]
*
len_output
,
dtype
=
np
.
float32
)
res
=
res
[:
len_output
]
return
res
if
len
(
res
)
==
0
:
return
0.0
else
:
return
res
[
-
1
]
def
run_program
(
self
,
inp
,
do_print
=
False
):
stack
=
[]
...
...
@@ -96,10 +94,10 @@ class Program:
input_index
=
-
value
-
NUM_OPERATORS
-
1
# Silently ignore input variables beyond the end of inp
if
input_index
<
len
(
inp
)
:
if
do_print
:
stack
.
append
(
f
'
x
{
input_index
}
'
)
else
:
if
do_print
:
stack
.
append
(
f
'
x
{
input_index
}
'
)
else
:
if
input_index
<
len
(
inp
)
:
stack
.
append
(
inp
[
input_index
])
continue
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment