Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
CM-GP
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Admin message
Setting up 2FA is now mandatory for all users.
Show more breadcrumbs
Senne Deproost
CM-GP
Commits
a5724f80
Commit
a5724f80
authored
8 months ago
by
Denis Steckelmacher
Browse files
Options
Downloads
Patches
Plain Diff
Stochastic program evaluation with mean and log_std of the genes
parent
6626b902
No related branches found
No related tags found
No related merge requests found
Changes
4
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
TD3_program_synthesis.py
+26
-19
26 additions, 19 deletions
TD3_program_synthesis.py
optim.py
+27
-40
27 additions, 40 deletions
optim.py
postfix_program.py
+25
-27
25 additions, 27 deletions
postfix_program.py
requirements.txt
+4
-74
4 additions, 74 deletions
requirements.txt
with
82 additions
and
160 deletions
TD3_program_synthesis.py
+
26
−
19
View file @
a5724f80
...
...
@@ -61,13 +61,13 @@ class Args:
"""
the discount factor gamma
"""
tau
:
float
=
0.005
"""
target smoothing coefficient (default: 0.005)
"""
batch_size
:
int
=
1
batch_size
:
int
=
32
"""
the batch size of sample from the reply memory
"""
policy_noise
:
float
=
0.2
"""
the scale of policy noise
"""
exploration_noise
:
float
=
0.1
"""
the scale of exploration noise
"""
learning_starts
:
int
=
0.1
*
total_timesteps
learning_starts
:
int
=
256
"""
timestep to start learning
"""
policy_frequency
:
int
=
3
"""
the frequency of training policy (delayed)
"""
...
...
@@ -75,14 +75,14 @@ class Args:
"""
noise clip parameter of the Target Policy Smoothing Regularization
"""
# Parameters for the program optimizer
num_individuals
:
int
=
10
num_genes
:
int
=
2
num_individuals
:
int
=
100
num_genes
:
int
=
5
num_eval_runs
:
int
=
10
num_generations
:
int
=
1
0
num_parents_mating
:
int
=
2
keep_parents
:
int
=
1
num_generations
:
int
=
2
0
num_parents_mating
:
int
=
50
keep_parents
:
int
=
5
mutation_percent_genes
:
int
=
10
keep_elites
:
int
=
1
def
make_env
(
env_id
,
seed
,
idx
,
capture_video
,
run_name
):
...
...
@@ -115,14 +115,19 @@ class QNetwork(nn.Module):
return
x
def
get_state_actions
(
program
,
obs
,
env
,
grad_required
=
False
):
def
get_state_actions
(
program
,
obs
,
env
,
args
,
grad_required
=
False
):
program_actions
=
[]
obs
=
obs
.
detach
().
numpy
()
for
i
,
o
in
enumerate
(
obs
):
program_actions
.
append
(
program
(
o
,
len_output
=
env
.
action_space
.
shape
[
0
]))
action
=
np
.
zeros
(
env
.
action_space
.
shape
,
dtype
=
np
.
float32
)
for
eval_run
in
range
(
args
.
num_eval_runs
):
action
+=
program
(
o
,
len_output
=
env
.
action_space
.
shape
[
0
])
program_actions
.
append
(
action
/
args
.
num_eval_runs
)
program_actions
=
torch
.
tensor
(
program_actions
,
requires_grad
=
grad_required
)
shp
=
(
len
(
obs
),
1
)
program_actions
.
reshape
(
shp
)
return
program_actions
...
...
@@ -222,7 +227,7 @@ def run_synthesis(args: Args):
)
# Go over all observations the buffer provides
next_state_actions
=
get_state_actions
(
program
,
data
.
next_observations
,
env
)
next_state_actions
=
get_state_actions
(
program
,
data
.
next_observations
,
env
,
args
)
next_state_actions
=
(
next_state_actions
+
clipped_noise
).
clamp
(
env
.
action_space
.
low
[
0
],
env
.
action_space
.
high
[
0
]).
float
()
...
...
@@ -246,12 +251,14 @@ def run_synthesis(args: Args):
# Optimize the program
if
global_step
%
args
.
policy_frequency
==
0
:
program_actions
=
get_state_actions
(
program
,
data
.
observations
,
env
,
grad_required
=
True
).
float
()
program_actions
=
get_state_actions
(
program
,
data
.
observations
,
env
,
args
,
grad_required
=
True
)
program_objective
=
qf1
(
data
.
observations
,
program_actions
).
mean
()
program_objective
.
backward
()
improved_actions
=
program_actions
+
0.1
*
program_actions
.
grad
print
(
program_actions
,
improved_actions
)
program_loss
=
-
qf1
(
data
.
observations
,
program_actions
).
mean
()
#program_loss.backward()
action_gradients
=
grad
(
program_loss
,
program_actions
)
improved_actions
=
program_actions
-
(
10e-2
*
action_gradients
[
0
])
RES
.
append
(
improved_actions
[
0
].
detach
().
numpy
())
program_optimizer
.
fit
(
states
=
data
.
observations
.
detach
().
numpy
(),
actions
=
improved_actions
.
detach
().
numpy
())
...
...
@@ -269,7 +276,7 @@ def run_synthesis(args: Args):
writer
.
add_scalar
(
"
losses/qf1_loss
"
,
qf1_loss
.
item
(),
global_step
)
writer
.
add_scalar
(
"
losses/qf2_loss
"
,
qf2_loss
.
item
(),
global_step
)
writer
.
add_scalar
(
"
losses/qf_loss
"
,
qf_loss
.
item
()
/
2.0
,
global_step
)
writer
.
add_scalar
(
"
losses/program
m_loss
"
,
program_
loss
.
item
(),
global_step
)
writer
.
add_scalar
(
"
losses/program
_objective
"
,
program_
objective
.
item
(),
global_step
)
writer
.
add_scalar
(
"
charts/SPS
"
,
int
(
global_step
/
(
time
.
time
()
-
start_time
)),
global_step
)
env
.
close
()
...
...
This diff is collapsed.
Click to expand it.
optim.py
+
27
−
40
View file @
a5724f80
...
...
@@ -7,13 +7,11 @@ from dataclasses import dataclass
from
postfix_program
import
Program
,
NUM_OPERATORS
N_INPUT_VARIABLES
=
1
class
ProgramOptimizer
:
def
__init__
(
self
,
config
):
# Create the initial population
self
.
initial_program
=
[
-
1.0
]
*
config
.
num_genes
self
.
initial_program
=
[
-
1.0
]
*
(
config
.
num_genes
*
2
)
# Mean and log_std for each gene
self
.
best_solution
=
self
.
initial_program
self
.
best_fitness
=
None
...
...
@@ -21,8 +19,6 @@ class ProgramOptimizer:
self
.
config
=
config
self
.
initial_population
=
[
np
.
array
(
self
.
initial_program
)
for
i
in
range
(
config
.
num_individuals
)]
self
.
f
=
None
def
get_best_program
(
self
):
return
Program
(
genome
=
self
.
best_solution
)
...
...
@@ -38,55 +34,46 @@ class ProgramOptimizer:
program
=
Program
(
genome
=
solution
)
for
index
in
range
(
batch_size
):
action
=
program
(
states
[
index
],
len_output
=
action_size
)
desired_action
=
actions
[
index
]
# Evaluate the program several times, because evaluations are stochastic
for
eval_run
in
range
(
self
.
config
.
num_eval_runs
):
for
index
in
range
(
batch_size
):
action
=
program
(
states
[
index
],
len_output
=
action_size
)
desired_action
=
actions
[
index
]
sum_error
+=
np
.
mean
((
action
-
desired_action
)
**
2
)
sum_error
+=
np
.
mean
((
action
-
desired_action
)
**
2
)
fitness
=
-
(
sum_error
/
batch_size
)
fitness
=
-
(
sum_error
/
(
batch_size
+
self
.
config
.
num_eval_runs
)
)
# !!!!
if
self
.
best_fitness
is
None
or
fitness
>
self
.
best_fitness
:
self
.
best_solution
=
solution
self
.
best_fitness
=
fitness
#print('F', fitness, file=sys.stderr)
return
fitness
self
.
ga_instance
=
pygad
.
GA
(
num_generations
=
self
.
config
.
num_generations
,
#parallel_processing=8,
save_solutions
=
True
,
save_best_solutions
=
True
,
num_parents_mating
=
self
.
config
.
num_parents_mating
,
fitness_func
=
fitness_func
,
initial_population
=
self
.
initial_population
,
parent_selection_type
=
"
sss
"
,
keep_parents
=
self
.
config
.
keep_parents
,
crossover_type
=
"
single_point
"
,
mutation_type
=
"
random
"
,
mutation_percent_genes
=
self
.
config
.
mutation_percent_genes
,
random_mutation_max_val
=
5
,
random_mutation_min_val
=-
5
,
gene_space
=
{
'
low
'
:
-
NUM_OPERATORS
-
N_INPUT_VARIABLES
,
'
high
'
:
1.0
},
keep_elitism
=
1
,
)
self
.
ga_instance
=
pygad
.
GA
(
fitness_func
=
fitness_func
,
initial_population
=
self
.
initial_population
,
num_generations
=
self
.
config
.
num_generations
,
num_parents_mating
=
self
.
config
.
num_parents_mating
,
keep_parents
=
self
.
config
.
keep_parents
,
mutation_percent_genes
=
self
.
config
.
mutation_percent_genes
,
# Work with non-deterministic objective functions
keep_elitism
=
0
,
save_solutions
=
False
,
save_best_solutions
=
False
,
parent_selection_type
=
"
sss
"
,
crossover_type
=
"
single_point
"
,
mutation_type
=
"
random
"
,
random_mutation_max_val
=
10
,
random_mutation_min_val
=-
10
,
)
self
.
ga_instance
.
run
()
# Allow the population to survive
self
.
initial_population
=
self
.
ga_instance
.
population
self
.
f
=
self
.
ga_instance
.
population
# Print the best individual
#program = self.get_best_program()
#print(program(states[0], do_print=True))
#self.ga_instance.plot_fitness()
@dataclass
class
Config
:
...
...
This diff is collapsed.
Click to expand it.
postfix_program.py
+
25
−
27
View file @
a5724f80
...
...
@@ -5,15 +5,15 @@
# Input variables # negative, we can have many of them
# <end> # OPERATOR_END
#
# 1. PyGAD produces numpy arrays (lists of floats), turn them into <see above>
# 1. PyGAD produces numpy arrays (lists of floats). Look at them in pairs of (mean, variance).
# sample a value from that normal distribution, and transform the sample to one
# of the tokens listed above
# 2. Run that
#
# Format: genes are floats. We
import
math
import
numpy
as
np
import
torch
as
th
class
Operator
:
def
__init__
(
self
,
name
,
num_operands
,
function
):
self
.
name
=
name
...
...
@@ -50,36 +50,36 @@ NUM_OPERATORS = len(OPERATORS)
class
Program
:
def
__init__
(
self
,
genome
=
None
,
size
=
None
):
self
.
size
=
size
if
genome
is
not
None
:
self
.
genome
=
genome
self
.
size
=
len
(
genome
)
else
:
assert
size
is
not
None
,
"
If genome is not specified, size must be given
"
self
.
genome
=
np
.
ones
(
size
)
def
__init__
(
self
,
genome
):
self
.
genome
=
genome
def
__str__
(
self
):
return
f
'
{
self
.
run_program
(
inp
=
[
1
],
do_print
=
True
)
}
'
def
__call__
(
self
,
inp
,
len_output
=
None
,
do_print
=
False
):
return
repr
(
self
.
run_program
(
inp
=
[
1
],
do_print
=
True
))
res
=
self
.
run_program
(
inp
,
do_print
=
do_print
)
def
__call__
(
self
,
inp
,
len_output
=
None
):
res
=
self
.
run_program
(
inp
,
do_print
=
False
)
# If the desired output length is given, pad the result with zeroes if needed
if
len_output
:
res
=
np
.
array
(
res
+
[
0.0
]
*
len_output
)
res
=
np
.
array
(
res
+
[
0.0
]
*
len_output
,
dtype
=
np
.
float32
)
res
=
res
[:
len_output
]
if
do_print
:
return
res
else
:
return
np
.
array
(
res
)
return
res
def
run_program
(
self
,
inp
,
do_print
=
False
):
stack
=
[]
for
value
in
self
.
genome
:
for
pointer
in
range
(
0
,
len
(
self
.
genome
),
2
):
# Sample the actual token to execute
mean
=
self
.
genome
[
pointer
+
0
]
log_std
=
self
.
genome
[
pointer
+
1
]
if
log_std
>
10.0
:
log_std
=
10.0
# Prevent exp() from overflowing
value
=
np
.
random
.
normal
(
loc
=
mean
,
scale
=
math
.
exp
(
log_std
))
# Execute the token
if
value
>=
0.0
:
# Literal, push it
if
do_print
:
...
...
@@ -139,7 +139,5 @@ class Program:
if
__name__
==
'
__main__
'
:
print
(
Program
([
2.0
,
-
21.0
,
-
6.0
,
-
1.0
,
-
1.0
])([
3.14
,
6.28
]))
print
(
Program
([
-
21
,
-
7.0
,
-
6.0
,
-
22.0
,
0.0
,
0.0
,
-
1.0
,
-
1.0
])([
1
,
8
]))
print
(
Program
([
5.0
,
-
21.0
,
-
6.0
,
-
1.0
,
-
1.0
])([
3.14
,
6.28
],
do_print
=
True
))
print
(
Program
([
-
17.0
])([
0.0
],
len_output
=
1
,
do_print
=
False
))
print
(
Program
([
5.0
,
1.0
,
-
21.0
,
-
2.0
]).
run_program
([
3.14
,
6.28
],
do_print
=
True
))
print
(
Program
([
-
17.0
,
0.0
]).
run_program
([
0.0
],
do_print
=
False
))
This diff is collapsed.
Click to expand it.
requirements.txt
+
4
−
74
View file @
a5724f80
absl-py
==2.1.0
certifi
==2024.7.4
charset-normalizer
==3.3.2
click
==8.1.7
cloudpickle
==3.0.0
contourpy
==1.2.1
cycler
==0.12.1
decorator
==4.4.2
docker-pycreds
==0.4.0
docstring_parser
==0.16
etils
==1.7.0
Farama-Notifications
==0.0.4
filelock
==3.15.4
fonttools
==4.53.1
fsspec
==2024.6.1
gitdb
==4.0.11
GitPython
==3.1.43
glfw
==2.7.0
grpcio
==1.64.1
gymnasium
==0.29.1
idna
==3.7
imageio
==2.34.2
imageio-ffmpeg
==0.5.1
importlib_resources
==6.4.0
Jinja2
==3.1.4
kiwisolver
==1.4.5
Markdown
==3.6
markdown-it-py
==3.0.0
MarkupSafe
==2.1.5
matplotlib
==3.9.1
mdurl
==0.1.2
moviepy
==1.0.3
mpmath
==1.3.0
mujoco
==3.1.6
mypy-extensions
==1.0.0
networkx
==3.3
numpy
==1.26.4
packaging
==24.1
pandas
==2.2.2
pillow
==10.4.0
platformdirs
==4.2.2
proglog
==0.1.10
protobuf
==4.25.3
psutil
==6.0.0
pygad
==3.3.1
pygame
==2.6.0
Pygments
==2.18.0
PyOpenGL
==3.1.7
pyparsing
==3.1.2
pyrallis
==0.3.1
python-dateutil
==2.9.0.post0
pytz
==2024.1
PyYAML
==6.0.1
requests
==2.32.3
rich
==13.7.1
sentry-sdk
==2.9.0
setproctitle
==1.3.3
shtab
==1.7.1
six
==1.16.0
smmap
==5.0.1
stable_baselines3
==2.3.2
sympy
==1.13.0
tensorboard
==2.17.0
tensorboard-data-server
==0.7.2
torch
==2.3.1
tqdm
==4.66.4
typing-inspect
==0.9.0
typing_extensions
==4.12.2
tyro
==0.8.5
tzdata
==2024.1
urllib3
==2.2.2
wandb
==0.17.4
Werkzeug
==3.0.3
zipp
==3.19.2
torch
stable_baselines3
tensorboard
pyrallis
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment